
GEOTECHNICAL ENGINEERING REPORT

PANDA EXPRESS RESTAURANT S8-08-D1322 3650 WEST 13400 SOUTH RIVERTON, UTAH

Terracon Project No. 61075008 February 21, 2007

Prepared for:

PANDA RESTAURANT GROUP, INC. 1683 Walnut Grove Avenue Rosemead, California 91770

Prepared by:

TERRACON CONSULTANTS, INC. 12217 South Lone Peak Pkwy. Suite 100 Draper, Utah 84020

February 21, 2007

Terracon Consultants, Inc. 12217 South Lone Peak Parkway, Suite 100 Draper, Utah 84020 Phone 801.545.8500 Fax 801.545.8600 www.terracon.com

Panda Restaurant Group, Inc. 1683 Walnut Grove Avenue Rosemead, California 91770

Attn:

Mr. Dalmar Duran

Re:

Geotechnical Engineering Report

Panda Express Restaurant

S8-08-D1322 Riverton, Utah

Terracon Project No. 61075008

Gentlemen:

At your request, Terracon Consultants, Inc. (Terracon) has performed a geotechnical exploration at 3650 West 13400 South in Riverton, Utah for the proposed Panda Express Restaurant #S8-08-D1322. This exploration was authorized by Mr. Dalmar Duran through Task Order 92-968N-06, issued under the Masters Service Agreement dated September 20, 2005, and referenced as PandRG.MSA.9.05. The accompanying report describes the exploration, summarizes our findings and presents geotechnical recommendations for the proposed structure, site grading and asphalt pavement section thickness.

We appreciate the opportunity to be of service to you on this project. If you have any questions concerning this report, or if we may be of further service, please contact us.

Sincerely.

TERRACON CONSULTANTS

Jeff W. Gilbert, E.I.T.

Geotechnical Staff Engineer

Rick L. Chesnut, P.E.

Principal

JWG/RLC/ac

Copies To: Electronic (1) dalmar.duran@PandaRG.com , larry jackson@PandaRG.com

N:\Projects\2007\61075008\61075008 Panda Riverton_GEO Rpt.doc

Delivering Success for Clients and Employees Since 1965 More Than 80 Offices Nationwide

TABLE OF CONTENTS

	Page
INTRODUCTION	1
PROJECT DESCRIPTION	1
SITE EXPLORATION PROCEDURES	1
Field Exploration	
Laboratory Testing	2
SITE CONDITIONS	
SUBSURFACE CONDITIONS	3
Soil Conditions	3
Groundwater Conditions	4
ENGINEERING ANALYSIS AND RECOMMENDATIONS	4
Geotechnical Considerations	4
Foundation Systems	
Floor Slab Design and Construction	5
Seismic Considerations	6
Pavements	6
Earthwork	
GENERAL COMMENTS	9

APPENDIX A:

Project Vicinity Map Boring Location Plan Logs of Borings

APPENDIX B:

General Notes Unified Classification System

GEOTECHNICAL ENGINEERING REPORT PANDA EXPRESS RESTAURANT S8-08-D1322 3650 WEST 13400 SOUTH RIVERTON, UTAH

Terracon Project No. 61075008 February 21, 2007

INTRODUCTION

This report presents the results of a geotechnical exploration for the proposed Panda Express Restaurant at 3650 West 13400 South, in Riverton, Utah. The general location of the site with respect to existing roads is presented on the Project Vicinity Map, included in Appendix A.

The purpose of this exploration was to evaluate subsurface conditions at the site, and provide geotechnical recommendations regarding design of foundations, earthwork and asphalt pavement section thickness design. The scope of work included subsurface exploration, field and laboratory testing, engineering analysis, and the preparation of this report.

PROJECT DESCRIPTION

We understand the proposed project will typically consist of one single-story, wood or metal-framed, slab-on-grade, restaurant building, typically comprising approximately 2,500 square feet (s.f.). It is anticipated that the proposed building will have maximum column loads of 75 kips and continuous wall loads of 3 kips per linear foot. We have assumed the maximum uniform floor slab load is anticipated to be 150 to 200 pounds per square foot (psf). Grade changes are not anticipated to exceed three feet.

Parking areas and service drives will consist of asphalt concrete and rigid cement concrete. Typical traffic flow is expected to be light duty, with some large delivery trucks on a weekly basis. For pavement section design purposes, traffic loads consisting of 10,000 Equivalent Single Axle Loads (ESALs) were assumed for the parking areas. For loading docks and other higher truck traffic areas, 75,000 ESALs were assumed.

Grading plans and finished elevation of the structure were not available at the time this report was prepared. However, we understand that the proposed building will be constructed near the existing site grade.

If structural loads are determined to be greater than those assumed above or if site grading activities vary significantly from that described above, we should be notified immediately so the necessary modifications can be made to our recommendations.

SITE EXPLORATION PROCEDURES

Terracon

Field Exploration

The subsurface exploration included drilling 2 borings to depths of about 21.5 feet below the existing site grade within the building footprint, and drilling 2 borings to depths of about 6.5 feet below the existing site grade parking areas. The approximate locations of the borings in relation to the proposed construction are shown on the Boring Location Plan, included in Appendix A. The borings were located by reference to existing on-site features. The locations are approximate and should be considered accurate only to the degree implied by the means and methods used to determine them.

The borings were drilled with a truck-mounted rotary drill rig with continuous flight hollow-stem augers. Disturbed soil samples were collected at various depths utilizing a 2-inch outside-diameter split spoon sampler driven in general accordance with the standard penetration test (SPT). This test consists of driving the sampler into the ground with a 140-pound hammer free-falling through a distance of 30 inches. The number of blows required to advance the sampler the last 12 inches, or the interval indicated, of a typical 18-inch penetration is recorded as the standard penetration resistance value (N-value). These values are indicated on the boring logs at the respective sample depths.

The standard penetration test provides a reasonable indication of the in-place density of sandy type materials, but only provides an indication of the relative stiffness of cohesive materials since the blow count in these soils may be affected by the moisture content. In addition, considerable care should be exercised in interpreting the N-values in gravelly soils, particularly where the size of the gravel particle exceeds the inside diameter of the sampler.

Terracon personnel prepared boring logs during drilling. The soil samples were packaged and transported to our Draper laboratory for further observation and testing.

Laboratory Testing

Samples obtained during the field exploration were visually classified in the laboratory in general accordance with the Unified Soil Classification System (USCS). The USCS is described in Appendix C.

Representative soil samples were selected for testing to determine physical and engineering properties and to aid in classification. Following are the laboratory tests performed and a brief description of each test:

Natural Water Content: The percentage of water in the soil at the sample location.

Percent Passing No. 200 Sieve: Amount of combined clay- and silt-sized particles in the sample.

Atterberg Limits: Consistency and range of moisture content within which the material is workable.

Results of the laboratory tests are summarized on the boring logs in Appendix A and in the following sections of this report.

SITE CONDITIONS

The site consists of an undeveloped parcel northwest of the intersection of 3650 West and 13400 south. The topography of the site is gently sloping downwards to the east. A large excavation (possibly a detention pond) was observed several hundred feet northeast of the site. The surface of the site was covered with grass and weeds. Piles of fill were noted north of the site. The site is bordered to the north and east by undeveloped land, to the south by 13400 South, and to the west by a construction site. No standing water or existing structures were observed on the site.

SUBSURFACE CONDITIONS

Soil Conditions

Subsurface conditions encountered at the site are indicated on the boring logs in Appendix A. The stratification lines shown on the logs represent the approximate boundary between the soil types encountered; the actual transition may be gradual.

Soil conditions encountered onsite consisted of silty clay and clay-silt with a layer of silty sand and silt at depth. Silty clay was encountered below the silty sand and silt layer to the maximum depth explored of 21-1/2 feet below existing site grade.

The clay and clay-silt were generally very stiff to hard with N-values ranging between 13 and 45 blows per foot of penetration. Laboratory test results indicate that these soils have a liquid limit ranging between 25 to 37 percent, plasticity indices ranging between 6 and 18 percent and moisture contents ranging between 8 and 25 percent. Pinholes were observed in this soil in the upper 4 feet of the site.

The silt was generally very stiff with N-values ranging between 14 and 24 blows per foot of penetration. Laboratory test results indicate that these soils have moisture contents at about 10 percent.

Panda Express Restaurant Riverton, Utah Terracon Project No. 61075008 Terracon

The silty sand was generally medium dense with N-values ranging between 19 and 27 blows per foot of penetration. Laboratory test results indicate that these soils have a moisture content of approximately 6 percent and a fines content of approximately 19 percent.

Groundwater Conditions

February 21, 2007

The borings were monitored during drilling for the presence and level of groundwater. At the time of our field exploration, groundwater was not encountered within the depths explored. It should be recognized that fluctuations of the groundwater table may occur due to seasonal variations in the amount of rainfall, runoff, construction and other factors not evident at the time the borings were performed. Evaluation of these factors is beyond the scope of this exploration.

ENGINEERING ANALYSIS AND RECOMMENDATIONS

Geotechnical Considerations

Based on the results of our exploration, it is our opinion that the site is suitable for the proposed construction provided the recommendations presented in this report are followed. The proposed building may be supported on lightly loaded continuous footings established on a minimum of 24 inches of properly placed and compacted structural fill as described below.

Pinholes were observed in near-surface soils encountered on this site. Pinholes are often associated with collapse potential in soil. This report provides recommendations to help reduce the potential for collapse below structures. However, even if these procedures are followed, the potential for some movement or minor cracking in the structure exists if subsurface soils become wetted. The potential for cracking and other damage will increase if any modification of the site results in excessive wetting of collapsible soils. Eliminating the risk of movement and distress may not be feasible, but it may be possible to further reduce the risk of movement if significantly more expensive measures are used during construction. We would be pleased to discuss other construction alternatives with you upon request.

Positive drainage away from the structure must be provided during construction and maintained throughout the life of the proposed project. Infiltration of water below structures should be prevented to reduce the potential for collapse. Special site grading and drainage recommendations are presented in this report to aid in controlling surface runoff. These special considerations should be discussed with the owner for planning purposes and made available to the contractor to minimize construction delays.

Foundation Systems

Lightly loaded conventional strip footings supported entirely on a minimum of 24 inches of properly placed and compacted structural fill may be proportioned for a maximum net allowable bearing pressure of 2,900 pounds per square foot (psf). The maximum allowable bearing pressure value applies to the total of dead load plus permanently and/or frequently applied live loads, and can be increased by 1/3 for short duration cyclic loads, such as wind or seismic.

If used, structural fill placed beneath foundations should extend laterally beyond the edges of the footings a distance equal to or greater than two-thirds of the structural fill thickness. Continuous and spot footings should have minimum dimensions of 16 inches and 30 inches, respectively. Exterior footing bottoms should be established a minimum of 30 inches below the lowest adjacent exterior grade for frost protection. Footings not subjected to frost should bear at least 12 inches below finished grade (proposed floor level).

Total settlements of footings are expected to be less than 1 inch for the recommended allowable bearing pressure. Differential settlement between similarly loaded footings is typically about 1/2 to 3/4 of the total settlement. Additional settlement should be anticipated if subsurface soils become wetted.

Lateral foundation loads may be resisted using the friction between the footing bottoms and underlying soil. Friction between the footing bottoms and underlying soil may be calculated using an ultimate friction coefficient of 0.4. A suitable factor of safety should be used against sliding.

If areas of loose or soft soil (unsuitable for bearing) are encountered in foundation excavations, the excavations should be extended deeper to suitable soils. The footings may then be extended to bear directly on these soils at the lower level or on properly compacted structural fill extending down to the suitable soils. The base of the foundation excavations should be free of water and loose soil prior to placing concrete. Soils at bearing level that become frozen, disturbed or saturated should be removed prior to placing concrete. Exposed footing excavations should be viewed by the geotechnical engineer.

Floor Slab Design and Construction

To provide uniform support for slabs placed on grade, we recommend that all slabs be placed on a minimum of 6 inches of crushed gravel underlain by undisturbed native soils or properly placed and compacted structural fill.

If moisture sensitive floor coverings or treatments are to be used in the structures, or if there are other concerns about moisture vapor transmission through concrete slabs, a vapor retarder should be considered. The building designer is usually in the best position to make final decisions regarding the use of a vapor retarder, its method of placement, and its position

relative to the base of the slab. We will be available at your request to discuss the advantages and disadvantages of various methods of vapor retarder placement and related slab design and construction recommendations.

Seismic Considerations

Based on the results of our exploration, the shallow subsurface soil profile is best represented by Site Class D according to the 2006 International Building Code (IBC). The spectral response accelerations for 0.2 second (S_s) and 1.0 second (S_1) periods for a 2% probability of exceedance (PE) in 50 years at the project site are presented below. A search of the National Seismic Hazard Map database indicates the following probabilistic peak horizontal ground acceleration (PGA) for a 2% probability of exceedance (PE) in 50 years at the project site.

Period	Assile all on the state
PGA	0.47g
0.2 sec SA	1.19g
1.0 sec SA	0.46g

The soil conditions encountered in the borings generally consisted of very stiff to hard clay and silt, and medium dense silty sand. According to our analysis, the potential of the silty sand liquefying, if saturated, is very low. Soils conditions deeper than 21-½ feet were not explored or assessed for liquefaction during this exploration. The site is located in an area designated on published liquefaction maps as having very low potential for liquefaction.

Pavements

The pavement section presented below was determined in general accordance with the 1993 AASHTO "Guide for the Design of Pavement Structures." Design traffic consisting of 10,000 ESALs was used for parking lots and 75,000 ESALs for loading docks and other higher truck traffic areas. A California Bearing Ratio (CBR) of 5 percent was assumed to represent the clay subgrade soil. The following pavement sections, or an approved equivalent, should be placed on the properly prepared subgrade soils as described below.

		g tergonimanides	Payemen estrai	(Cenail) (an	
Traffic Acea.	ersonales Projectos	Parland E- Weenburges Westpranses		Granillarde MSTIBRASO A	Total
	3.0	_	6.0		9.0
Parking Lots		5.0	6.0		11.0
	4.0		9.0		13.0
Truck Traffic Areas		6.0	6.0	_	12.0

Paved areas should have positive drainage to prevent ponding of surface water and saturation of the base course and underlying sub-grade. Permanent drainage should be incorporated into the pavement grading design.

The asphaltic concrete should be placed and compacted to at least 95 percent of the maximum density as determined by ASTM D 1559 (50 blows each end). Aggregates, granular subbase, and asphaltic concrete should conform to local city or Utah Department of Transportation (UDOT) specifications.

In areas of anticipated heavy load (i.e. trash dumpster pads) or concentrated loads, a Portland cement concrete section of at least 8 inches thick is recommended.

The pavement sections provided in this report are minimums for the given design criteria and as such, periodic maintenance should be expected. A maintenance program that includes surface sealing, joint cleaning and sealing, and timely repair of cracks and deteriorated areas will increase the pavement's service life. As an option, thicker sections could be constructed to decrease future maintenance.

Earthwork

Topsoil, existing fill, disturbed soils and other deleterious materials should be removed from beneath building and pavement areas. Excavations resulting from the removal of these materials should be backfilled with structural fill. Following removal of these materials, the exposed native soils should be proof-rolled to aid in assessing subgrade condition. Soft areas encountered during proof-rolling should be excavated and replaced with structural fill properly placed and compacted as described below.

The near-surface native soils encountered may be susceptible to disturbance or rutting under the weight of construction equipment if they become wet. In order to reduce the potential for disturbance or rutting, excessive water should not be applied to the surface during earthwork operations and construction should occur during dryer weather. Soils that become excessively rutted, are pumping or otherwise disturbed are unstable and not suitable for support of

structural loads, floor slabs or pavements, and should be removed and replaced with structural fill.

Positive drainage away from the structure must be provided during construction and maintained throughout the life of the proposed project. Infiltration of water into excavations should be prevented during construction. It is important that foundation soils are not allowed to become wetted. All grades must provide effective drainage away from the building during and after construction. Water permitted to pond next to the building can result in greater soil movements than those discussed in this report. These greater movements can result in unacceptable differential floor slab movements and cracked slabs and walls. Estimated movements described in this report are based on effective drainage for the life of the structure and cannot be relied upon if effective drainage is not maintained.

Exposed ground should be sloped at a minimum 5 percent away from the building for at least 10 feet beyond the perimeter of the building. After building construction and landscaping, we recommend verifying final grades to document that effective drainage has been achieved. Grades around the structure should also be periodically inspected and adjusted as necessary, as part of the structure's maintenance program.

Roof runoff and surface drainage should be collected and discharged far away from the structure to prevent wetting of the foundation soils. Roof gutters should be installed and connected to downspouts and pipes directing roof runoff at least 10 feet away from the building.

Planters located within 10 feet of the structure should be self-contained to prevent water accessing the building and pavement subgrade soils. Sprinkler mains and spray heads should be located at least 5 feet away from the building. Landscaped irrigation should not be used near the building.

Structural fill beneath foundations or slabs should consist of well graded, granular soil with a maximum particle size of 3 inches, 25 to 60 percent passing the No. 4 sieve and having 30 to 50 percent fines. The recommended 6-inch thick layer of gravel beneath concrete slabs should be 3/4-inch minus crushed aggregate.

All fill should be approved by the geotechnical engineer, should be moisture conditioned to near optimum water content, placed in uniform lifts not exceeding 8 inches in loose thickness, and be compacted to the following minimum percentages of the maximum dry density as determined by ASTM D 1557 (Modified Proctor):

Location	Rendent of Maximum Dry Density.
Building areas	95
Pavement areas and other areas of fill and backfill	92

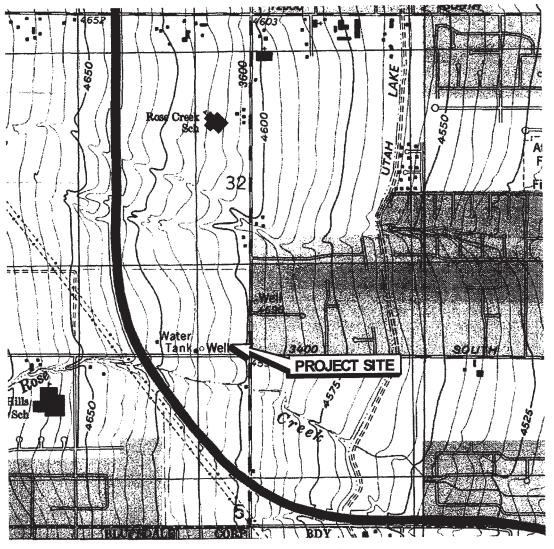
It is the responsibility of the contractor to provide safe working conditions in connection with underground excavations. Temporary construction excavations should be properly sloped or shored. All excavations should be accomplished in accordance with applicable federal, state, and local standards.

It is anticipated that the majority of the excavations for the proposed construction can be accomplished with conventional earth moving equipment.

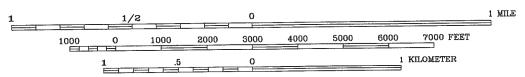
Earthwork on the project should be observed and evaluated by Terracon. The evaluation of earthwork should include observation and testing of structural fill, subgrade preparation, foundation bearing soils, and other geotechnical conditions exposed during the construction of the project.

GENERAL COMMENTS

Terracon should be retained to review the final design plans and specifications so comments can be made regarding interpretation and implementation of our geotechnical recommendations in the design and specifications. Terracon also should be retained to provide testing and observation during excavation, grading, foundation and construction phases of the project.


The analysis and recommendations presented in this report are based upon the data obtained from the borings performed at the indicated locations and from other information discussed in this report. This report does not reflect variations that may occur between borings, across the site, or due to the modifying effects of weather. The nature and extent of such variations may not become evident until during or after construction. If variations appear, we should be immediately notified so that further evaluation and supplemental recommendations can be provided.

The scope of services for this project does not include either specifically or by implication any environmental or biological (e.g., mold, fungi, and bacteria) assessment of the site or identification or prevention of pollutants, hazardous materials or conditions. If the owner is concerned about the potential for such contamination or pollution, other studies should be undertaken.


lerracon

Panda Express Restaurant Riverton, Utah Terracon Project No. 61075008 February 21, 2007

This report has been prepared for the exclusive use of our client for specific application to the project discussed and has been prepared in accordance with generally accepted geotechnical engineering practices. No warranties, expressed or implied, are intended or made. Site safety, excavation support, and dewatering requirements are the responsibility of others. In the event that changes in the nature, design, or location of the project as outlined in this report are planned, the conclusions and recommendations contained in this report shall not be considered valid unless Terracon reviews the changes and either verifies or modifies the conclusions of this report in writing.

SCALE 1:24,000

CONTOUR INTERVAL 5 FEET

NATIONAL GEODETIC VERTICAL DATUM OF 1929

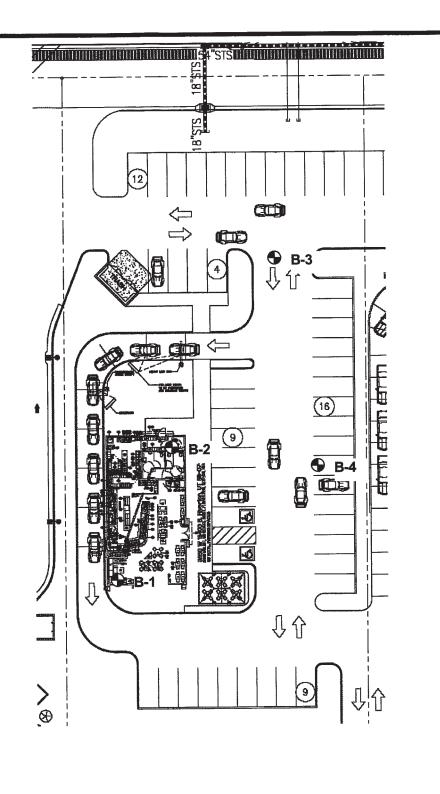
File Name:

PROJECT VICINITY MAP PANDA EXPRESS RIVERTON 3650 W. 13400 S. RIVERTON, UTAH PANDA RESTAURANT GROUP

Project Mngr: RLC
Designed By: USGS
Checked By: JWG
Draper, Utah 84020
801.545.8500 fax: 801.545.8600

N:\Projects\2007\61075008\61075008 Figure 1 Vicinity.doc

Project No. 61075008


Scale: 1:24,000

Date: 2/21/2007

Drawn By: ABS (61)

Figure No. 1

DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES.

BORING LOCATION PLAN PANDA EXPRESS RIVERTON 3650 W. 13400 S.

RIVERTON, UTAH FOR PANDA RESTAURANT GROUP

Project Mngr:		
	RLC	
Designed By:	JWG	llerrad
Checked By:	JWG	12217 S. Lone Peak Pk Draper, Utah 84
Approved By:	RLC	801.545.8500 Fax: 80
File Name:	N:\Projects\2007\61	075008\8x 11 Word Portrait.doc

12217 S. Lone Peak Pkwy. Ste. 100 Draper, Utah 84020 801.545.8500 Fax: 801.545.8600

Project No.		
L	61075008	
Scale:		Ī
1	NOT TO SCALE	
Date:	2/21/07	
Drawn By:	JWG (61)	
Figure No.	2	

DIAGRAM IS FOR GENERAL LOCATION ONLY, AND IS NOT INTENDED FOR CONSTRUCTION PURPOSES.

		- Company
A.		1
A		AN ALVANDA
•		Ì
		-
		-
		0004404
		-
		İ
·		
		-
		1
		Line was
		[
		Taxable Control
		ĺ
		1
		1
		1:

	LOG OF BOF	RING	NO	. E	3-0	1						Pag	e 1 of 1
CLI	ENT Panda Restaurant Group Inc.												
SIT		PROJECT											
	Riverton, Utah						la Exp	ress					
					SAI	MPLE	<u> </u>			EST	> 		
GRAPHIC LOG		DЕРТН, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, in.	PENETRATION RESISTANCE BLOWS / ft.	WATER CONTENT, %	DRY UNIT WEIGHT, PCF	LIQUID LIMIT	PLASTICITY INDEX	% PASSING NO. 200 SIEVE	OTHER
	0:25 TOPSOIL: with grass and weeds	 											
	SILTY CLAY: very stiff to hard, light brown with white streaking and orange mottling, pinholes in	2—		1	SS	18	20	10					
	upper 4'	4—											
		5—		2	SS	10	44						
		6-											
		8—	CL	3	SS	4	26	13		37	18		
	9.5	9		_									
	SILTY SAND: medium dense, brown to gray	10—	SM	4	SS	14	19	6				19	
	12 SILT:	12-											
	very stiff, brown with orange mottling	13—		5	SS	16	14						
	14.5 SILTY CLAY: very stiff, gray to brown with orange mottling	15—		6	SS	14	13						
	•	17—											
		18—											
		19—	}										
		20-		7	SS	14	19						
	BOTTOM OF BORING AT APPROXIMATELY 21.5 FEET												
The	stratification lines represent the approximate boundary lines recens soil and rock types: in-situ, the transition may be gradual.				1	1	1	<u> </u>		<u> </u>	1		
3	TER LEVEL OBSERVATIONS, ft					В	ORING	STA	RTE	D			2-7-07
WL				_	_		ORING)		2-7-07
WL	Ä Ä Ä Š	'a (N	R	IG				FORE	MAN	JWG
WL						L	OGGE)	JW	/G	JOB #	ŧ 6	1075008

	LOG OF BORING NO. B-02 Page 1 of 1									e 1 of 1			
CLI	ENT Panda Restaurant Group Inc.												
SIT		PRO	JEC	Γ							,		
	Riverton, Utah					and MPLE	la Exp	ress		erto Ests			
					المن	711 -							
GRAPHIC LOG		DEPTH, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, in.	PENETRATION RESISTANCE BLOWS / ft.	WATER CONTENT, %	DRY UNIT WEIGHT, PCF	LIQUID LIMIT	PLASTICITY INDEX	% PASSING NO. 200 SIEVE	OTHER
	0.25 TOPSOIL:												1
	with grass and weeds CLAY-SILT: very stiff to hard, light brown to white with orange mottling, pinholes in upper 4'	1— 2— 3—	CL ML	1	SS	14	17	8		25	6		
		4-											
		5— 6—		2	SS	8	34						
		7—											
		8-		3	SS	12	34	8					
	9.5 SILTY SAND:	10-			00	40	07	<u> </u>		_			
	medium dense, light brown	11-		4	SS	12	27						
	SILT:	12—	-	5	SS	14	24	-					
	very stiff, light brown	13—	_	ľ		ļ							
		15—	-	6	SS	12	24	10					
		17-	-										
	18 SILTY CLAY:	18-	1										
	very stiff, brown	19-	1										
		20-		7	SS	12	25						
7///	BOTTOM OF BORING AT APPROXIMATELY 21.5 FEET	-											
IERRACON GD													
Th	e stratification lines represent the approximate boundary lines ween soil and rock types: in-situ, the transition may be gradual.												
2	ATER LEVEL OBSERVATIONS, ft					В	ORING	ST/	ARTE	D			2-7-07
	V NE WD ¥					B	ORING	3 CO	MPL	ETE	D		2-7-07
		3			П	F	RIG				FOR		
W						L	OGGE	D	J۷	٧G	JOB	# (61075008

	LOG OF BORING NO. B-03 Page 1 of 1												
CLI	ENT Panda Restaurant Group Inc.												
SIT		PRO	JEC	Γ							·		
L	Riverton, Utah					Pand MPLE	a Exp	ress		erto ESTS			
					SAI		3			LOTO	<u>, </u>		
GRAPHIC LOG		DЕРТН, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, in.	PENETRATION RESISTANCE BLOWS / ft.	WATER CONTENT, %	DRY UNIT WEIGHT, PCF	LIQUID LIMIT	PLASTICITY INDEX	% PASSING NO. 200 SIEVE	OTHER
	0.25 TOPSOIL: with grass and weeds	1 <u>-</u>											
	SILTY CLAY: with fine to coarse sand, very stiff to hard, light brown to dark brown with some white, pinholes in upper 4'	3—	CL	1	SS	18	20	15		29	15		
		5—		2	SS	14	28						
	6.5	6-								_			
LEKKACON,SD1 ZZTUT	BOTTOM OF BORING AT APPROXIMATELY 6.5 FEET												
EKKACL													
	e stratification lines represent the approximate boundary lines ween soil and rock types: in-situ, the transition may be gradual.												
	ATER LEVEL OBSERVATIONS, ft					В	ORING	ST/	ARTE	D			2-7-07
S WI						В	ORING	3 CO	MPL	ETE	D		2-7-07
WI WI					П	R	IG				FORI		
ig Wi						L	OGGE	D	J۷	۷G	JOB	# (31075008

	LOG OF BOR	NG N	10	. E	3-04	4						Pag	e 1 of 1
CLI	ENT Panda Restaurant Group Inc.												
SIT		PROJECT Panda Express Riverton											
					SA	MPLE				ESTS	3		
GRAPHIC LOG		DEPTH, ft.	USCS SYMBOL	NUMBER	TYPE	RECOVERY, in.	PENETRATION RESISTANCE BLOWS / ft.	WATER CONTENT, %	DRY UNIT WEIGHT, PCF	LIQUID LIMIT	PLASTICITY INDEX	% PASSING NO. 200 SIEVE	OTHER
	0.25 TOPSOIL: with grass and weeds SILTY CLAY:	1_											
	with grass and weeds SILTY CLAY: very stiff to hard, brown with white stain, pinholes in upper 4'	3—		1	SS	14	19	13					
		5—		2	SS	10	45						
	BOTTOM OF BORING AT APPROXIMATELY 6.5 FEET	6											
G T	ne stratification lines represent the approximate boundary lines etween soil and rock types: in-situ, the transition may be gradual.						BORIN		APT				2-7-07

WATER LEVEL OBSERVATIONS, π

TL V NE WD V

Y

V

Terracon

BORING STA		2-7-07		
BORING CO	MPLETE	D		2-7-07
RIG	B-80	FOREM	AN	JWG
LOGGED	JWG	JOB#	61	075008

APPENDIX B

GENERAL NOTES
UNIFIED CLASSIFICATION SYSTEM

GENERAL NOTES

DRILLING & SAMPLING SYMBOLS:

	O CO O Tuni En lo O Time o E C		
SS:	Split Spoon - 1-3/8" I.D., 2" O.D., unless otherwise noted	HS:	Hollow Stem Auger
ST:	Thin-Walled Tube - 3" O.D., unless otherwise noted	PA:	Power Auger
RS:	Ring Sampler - 2.42" I.D., 3" O.D., unless otherwise noted	HA:	Hand Auger
DB:	Diamond Bit Coring - 4", N, B	RB:	Rock Bit
BS:	Bulk Sample or Auger Sample	WB:	Wash Boring or Mud Rotary

The number of blows required to advance a standard 2-inch O.D. split-spoon sampler (SS) the last 12 inches of the total 18-inch penetration with a 140-pound hammer falling 30 inches is considered the "Standard Penetration" or "N-value". For 3" O.D. ring samplers (RS) the penetration value is reported as the number of blows required to advance the sampler 12 inches using a 140-pound hammer falling 30 inches, reported as "blows per foot," and is not considered equivalent to the "Standard Penetration" or "N-value".

WATER LEVEL MEASUREMENT SYMBOLS:

WL: WCI:	Water Level Wet Cave in	WS: WD:	While Sampling While Drilling	N/E:	Not Encountered
DCI: AB:	Dry Cave in After Boring	BCR: ACR:	Before Casing Removal After Casing Removal		

Water levels indicated on the boring logs are the levels measured in the borings at the times indicated. Groundwater levels at other times and other locations across the site could vary. In pervious soils, the indicated levels may reflect the location of groundwater. In low permeability soils, the accurate determination of groundwater levels may not be possible with only short-term observations.

DESCRIPTIVE SOIL CLASSIFICATION: Soil classification is based on the Unified Classification System. Coarse Grained Soils have more than 50% of their dry weight retained on a #200 sieve; their principal descriptors are: boulders, cobbles, gravel or sand. Fine Grained Soils have less than 50% of their dry weight retained on a #200 sieve; they are principally described as clays if they are plastic, and silts if they are slightly plastic or non-plastic. Major constituents may be added as modifiers and minor constituents may be added according to the relative proportions based on grain size. In addition to gradation, coarse-grained soils are defined on the basis of their in-place relative density and fine-grained soils on the basis of their consistency.

CONSISTENCY OF FINE-GRAINED SOILS

RELATIVE DENSITY OF COARSE-GRAINED SOILS

	Standard		<u>Standard</u>		
<u>Unconfined</u>	Penetration or		Penetration or		
Compressive	N-value (SS)		N-value (SS)	Ring Sampler (RS)	
Strength, Qu. psf	Blows/Ft.	Consistency	Blows/Ft.	Blows/Ft.	Relative Density
< 500	<2	Very Soft	0-3	0-6	Very Loose
500 - 1,000	2-3	Soft	4 – 9	7-18	Loose
1.001 - 2.000	4-6	Medium Stiff	10 – 29	19-58	Medium Dense
2.001 - 4.000	7-12	Stiff	30 – 49	59-98	Dense
4,001 - 8,000	13-26	Very Stiff	50+	99+	Very Dense
8,000+	26+	Hard			

RELATIVE PROPORTIONS OF SAND AND GRAVEL

GRAIN SIZE TERMINOLOGY

Descriptive Term(s) of other constituents	Percent of Dry Weight	Major Component of Sample	Particle Size
Trace With Modifier	< 15 15 – 29 > 30	Boulders Cobbles Gravel Sand	Over 12 in. (300mm) 12 in. to 3 in. (300mm to 75 mm) 3 in. to #4 sieve (75mm to 4.75 mm) #4 to #200 sieve (4.75mm to
RELATIVE PROPORTIONS	<u>OF FINES</u>	Silt or Clay	0.075mm) Passing #200 Sieve (0.075mm)

Descriptive Term(s) of other	Percent of	PLASTICIT	PLASTICITY DESCRIPTION		
constituents	<u>Dry Weight</u>	<u>Term</u>	Plasticity Index		
Trace	< 5	Non-plastic	0		
With	5 – 12	Low	1-10		
Modifiers	> 12	Medium	11-30		

30+

High

UNIFIED SOIL CLASSIFICATION SYSTEM

Criteria foi	riteria for Assigning Group Symbols and Group Names Using Laboratory Tests ^A		Group	Soil Classification	
				Symbol	Group Name ⁸
Coarse Grained Soils	Gravels	Clean Gravels	Cu ≥ 4 and 1 ≤ Cc ≤ 3 ^E	GW	Well-graded gravel ^F
More than 50% retained	More than 50% of coarse	Less than 5% fines ^c	Cu < 4 and/or 1 > Cc > 3 ^E	GP	Poorly graded gravel ^F
on No. 200 sieve	fraction retained on No. 4 sieve	Gravels with Fines	Fines classify as ML or MH	GM	Silty gravel ^{F,G, H}
5		More than 12% fines ^c	Fines classify as CL or CH	GC	Clayey gravel ^{F,G,H}
	Sands 50% or more of coarse fraction passes No. 4 sieve	Clean Sands	Cu ≥ 6 and 1 ≤ Cc ≤ 3 ^E	sw	Well-graded sand
		Less than 5% fines ^D	Cu < 6 and/or 1 > Cc > 3 ^E	SP	Poorly graded sand
		Sands with Fines More than 12% fines ^D	Fines classify as ML or MH	SM	Silty sand ^{G,H,I}
			Fines Classify as CL or CH	sc	Clayey sand ^{G,H,I}
Fine-Grained Soils	Silts and Clays Liquid limit less than 50	inorganic	PI > 7 and plots on or above "A" line	CL	Lean clay ^{K,L,M}
50% or more passes the			PI < 4 or plots below "A" line ^J	ML	Silt ^{K,L,M}
No. 200 sieve		organic	Liquid limit - oven clied < 0.75	OL	Organic clay ^{K,L,M,N}
			Liquid limit - not dried		Organic silt ^{X,L,M,O}
	Silts and Clays	inorganic	PI plots on or above "A" line	СН	Fat clay ^{K,L,M}
	Liquid limit 50 or more		PI lots below "A" line	МН	Elastic Silt ^{K,L,M}
		organic	Liquid limit - oven dried < 0.75	ОН	Organic clay ^{K,L,M,P}
			Liquid limit - not dried		Organic silt ^{K,L,M,Q}
Highly organic soils	Primaril	y organic matter, dark in	color, and organic odor	PT	Peat

^A Based on the material passing the 3-in. (75-mm) sieve

- If field sample contained cobbles or boulders, or both, add "with cobbles or boulders, or both" to group name.
- Gravels with 5 to 12% fines require dual symbols: GW-GM well-graded gravel with silt, GW-GC well-graded gravel with clay, GP-GM poorly graded gravel with silt, GP-GC poorly graded gravel with clay.
- Sands with 5 to 12% fines require dual symbols: SW-SM well-graded sand with silt, SW-SC well-graded sand with clay, SP-SM poorly graded sand with silt, SP-SC poorly graded sand with clay

$$^{E}\,Cu = D_{\!60}/D_{\!10} \quad \quad Cc = \frac{\left(D_{\!30}\right)^{\!2}}{D_{\!10}\,x\,\,D_{\!60}}$$

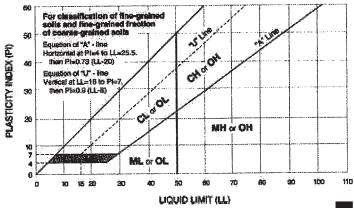
F If soil contains ≥ 15% sand, add "with sand" to group name.

^G If fines classify as CL-ML, use dual symbol GC-GM, or SC-SM.

^HIf fines are organic, add "with organic fines" to group name.

¹ If soil contains ≥ 15% gravel, add "with gravel" to group name.

^J If Atterberg limits plot in shaded area, soil is a CL-ML, silty clay.


If soil contains 15 to 29% plus No. 200, add "with sand" or "with gravel," whichever is predominant.

 $^{\text{L}}$ If soil contains \geq 30% plus No. 200 predominantly sand, add "sandy" to group name.

M If soil contains ≥ 30% plus No. 200, predominantly gravel, add "gravelly" to group name.

^N $Pl \ge 4$ and plots on or above "A" line.

- O PI < 4 or plots below "A" line.
- P PI plots on or above "A" line.
- PI plots below "A" line.

STRUCTURAL DESIGN CALCULATIONS

PROJECT:

PANDA EXPRESS

LOCATION:

RIVERTON, UTAH

BUILDING CODE:

2006 INTERNATIONAL BUILDING CODE

DESIGN LOADS

90 MPH WIND LOAD

30 PSF ROOF LIVE LOAD

(30 PSF GROUND SNOW LOAD)

20 PSF ROOF DEAD LOAD

DATE:

MAY 23, 2007

CITY COMMENTS 03/06/08

Donald	PROJECT: Panda Express		_ JOB NO
Oot	perts SUBJECT: Design Loads		DATE
1/	Inc. BY: CP CK:	· · · · · · · · · · · · · · · · · · ·	_ SHT: OF
Roof	Dead Load (Per ASCE 7 table	C3-1).	
	Roof Deck (3/4" plywood)	= 2.4 psf	
	Insulation (3" ngid)	= 4.5 psf	
	Roofing (Bituminous)	= 1.5 psf	FORDUTY
	Joists (per TJ manual, TJS≈ 5.0 psf)	= 5.0 Psf	
	Misc HVAC	= 4.0 psf	
	Ceiling, Lighting, etc.	= 2.6 psf	

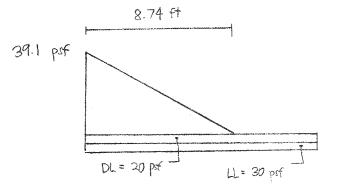
Live Load = 30 ps

	4.5		+ *	
Don	ald Project:	Panda Express	JOB NO	
	Oberts SUBJECT:	Design Loads	DATE	
Associ Consultin	ates, Inc. g Engineers BY:C.P.	CK:	SHT:	OF
	Wind Load: per 2006	S IBC		
	Wind speed: 90 mph			
	Exposure : C			
	Use simplified Wind	Liad Method (ASCE	7-05):	
	ps = 1 Kz+ I Os30			
) = 1.29 (Fig. 6-2 ASCE	7-05 p40) H = 20 ff		
	Ket = 1.0 (ASCE 7-05	s section 6.5.7 p26)		
	I = 1.0 (table 6-1 AS	SCE 7-05 P.77)		
	Ps30 = 12.8 psf (R00f)	angle 0 to 5° - fig 6-2 ps	88 ASCE 7-05)	
	ps = (1.29)(1.0)(1.0)	(12.8) = [6.5 pcf (Ho)]	rizontal)	
	For H= 25 ft (towers)			
	λ = 1.25			
	Ps = 1.35(1.0)(1.0)(1	2.8) = 17.3 psf (Horizon	ntal - tower)	
:	Uplift on roof element	ts		
	Pnet = 1 Kzt I Pnetso			
	λ = 1.21 (Fig. 6-3 ASCE	7-05 p44) H = 14 ft		
	Kzt = 1.0			
	I = 1.00			
	Pnet $20 = 15.8$ psf (Zone	3; Effective area = 100.	sf) fig. 6-3 p42	

 $P_{\text{net}} = (1.21)(1.0)(1.0)(15.8) = 19.11 \text{ psf} (Vertical gross)$

Net wind load = 19.11 psf - (20/2) - 9.11 psf (vertical)

(net, components and cladding)


SNOW DRIFT CALCUATIONS

USE ASCE 7-05 EQUATIONS

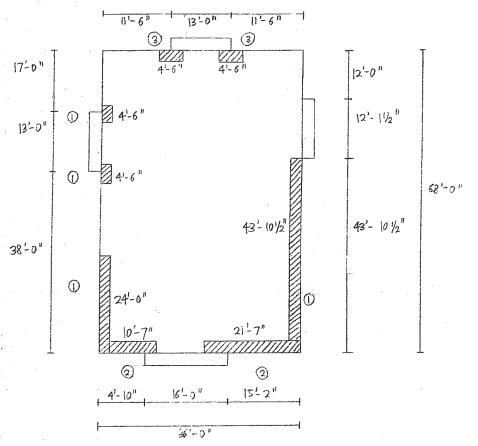
 $Hd = 0.43 \times 1/3ROOT(Wb) \times 1/4ROOT(Pg + 10) - 1.5$

Wb = Pg =	68 FT 45 PSF 43 PSF 35 PSF 31.5 PSF 30 PSF 25 PSF 21 PSF 20 PSF 15 PSF	
0.75 x Hd	2.46 FT 2.43 FT 2.28 FT 2.22 FT 2.19 FT 2.08 FT 1.98 FT 1.96 FT 1.82 FT	(45 PSF) (43 PSF) (35 PSF) (31.5 PSF) (30 PSF) (25 PSF) (21 PSF) (20 PSF) (15 PSF)
Wd = 4 x (0.75 x Hd)	9.84 FT 9.71 FT 9.14 FT 8.86 FT 8.74 FT 8.31 FT 7.92 FT 7.82 FT 7.27 FT	(45 PSF) (43 PSF) (35 PSF) (31.5 PSF) (30 PSF) (25 PSF) (21 PSF) (20 PSF) (15 PSF)
D = 0.13 x Pg + 14.0	19.9 PCF 19.6 PCF 18.6 PCF 18.1 PCF 17.9 PCF 17.3 PCF 16.7 PCF 16.6 PCF 16.0 PCF	(45 PSF) (43 PSF) (35 PSF) (31.5 PSF) (30 PSF) (25 PSF) (21 PSF) (20 PSF) (15 PSF)

$Pd = (0.75 \times Hd) \times D$	48.8 PSF	(45 PSF)
,	47.5 PSF	(43 PSF)
	42.4 PSF	(35 PSF)
ta.	40.1 PSF	(31.5 PSF)
	39.1 PSF	(30 PSF)
	35.8 PSF	(25 PSF)
	33.1 PSF	(21 PSF)
	32.5 PSF	(20 PSF)
	20 N PSF	(15 PSF)

	•			•	
onald	PROJECT:	Panda Express		_ JOB NO	
oberts	SUBJECT: De	sign Values	/Equations	_ DATE	1/13/04
Associates, Inc.	ву:У	<u></u> ск: _		_ SHT:	OF
· Glulam	Beams:	(Lesser	of 24F-VI	BDFL O	R 24FV4 SI
Fb=	= 2400 ps	L			
. F _v	= 190 ps	i			
E	= 1,700,6)00 psi			
• 2x - 4x	(Lumber	e: (Less	er of #2	DFL c	r #25P)
Fb	= 900 ps	L	٠.		
Fv	,= 30 psi				
·Fa	= 1350 p	si .			
E	= 1,600,	000 psi			
F.	t= 550 pe	, i			
F	al = 565	psi			
*5x and	l larger:	(Lesser	sf#IDFL	OR #1	SP)
F	= 1200 ps	U .	. 10.	α	
Fv	= 85 psi		* 13	SL Colu Fb = 24:1	imris.
F	= 825 ps	Ĺ	•	Ful = 25	DOpsi.
E.	= 1,500,0	00 psi		E = 1,80	10,000 psi
	= 675 psi				
	1= 375 ps				:
				•	
· A Regul =	Vmx (1.5)	•	\circ Speed = D	1max (12 Fb	<u>)</u> .
· I regd = _	w (240)(5 12 (384))[1.12] ³ ·E	(simple s	upport,1 L/240	uniform load
		•			

 $\bullet V_{mav} = \underline{WL} \qquad \bullet M_{mn} = \underline{WL^2}$


PROJECT: Panda Express JOB NO.

SUBJECT: Shearwall Design

Associates, Inc.

C.P. BY:

SHT: _____

नोगागोग

W= 16.5 pcf@ Main Bldg.

For main building:

Height to dock = 14'-0"

$$R = 16.5 \left[\left(\frac{14}{2} \right) + (21 - 14) \right] = 231 \text{ plf}$$

For tower:

W = 17.3 psf Height = 23 ft

Rtower = 17.3 (23-21) = 35 pH Additional load

onald	PROJECT: _	Panda Express	JOB NO
Poberts	SUBJECT: _	Seismic design	DATE

Per 2006 IBC

Simplified Analysis Procedure for seismic Design of buildings.

_ SHT: __

 $S_s = 1.136$

Si = 0.467

site class D

SMS + Fa Ss (eqn. 11.4-1 ASCE 7 P115)

SM = FV Si (eqn. 11.9-2 ASCE 7 P115)

where

Fa = 1.0 (table 11.4-1 ASCE 7 pl/s)

Fv = 1.6 (table 11.4-2 ASCE 7 P.115)

 $S_{MS} = 1.0 (1.136) = 1.136$

 $S_{MI} := 1.6(0.467) = 0.747$

 $Sps = \frac{2}{3} fa Ss$ (eqn. 12.14-11 ASCE 7 p.141)

3

SDS = 2 (1.0) (1.136) = 0.757

3

 $SDI = \frac{2}{3}SMI = \frac{2}{3}(0.747) = 0.498$

Occupancy category II (table 1-1 ASCE 7 P3)

Importance factor, I = 1.0 (table 11.5-1 ASCE 7 P116)

Seismic design category: 1 (table 11.6-1, 11.6-2 ASCE 7 P116)

Seismic base shear:

V = FSps .W (eq. 12.14-11 ASCE 7 p.141)

where F= 1.0 & R= 65 (table 12.14-1 ASCE 7, P135)

Project Name = Riverton, Utah

Conterminous 48 States

2006 International Building Code

Zip Code = 84065

Spectral Response Accelerations Ss and S1

Ss and S1 = Mapped Spectral Acceleration Values

Site Class B - Fa = 1.0 ,Fv = 1.0

Data are based on a 0.01 deg grid spacing

Period Centroid Sa

(sec) (g)

0.2 1.136 Ss, Site Class B

1.0 0.467 S1, Site Class B

Period Maximum Sa

(sec) (g)

0.2 1.368 Ss, Site Class B

1.0 0.575 S1, Site Class B

Period Minimum Sa

(sec) (g)

0.2 0.783 Ss, Site Class B

1.0 0.295 S1, Site Class B

Conterminous 48 States

2006 International Building Code

Zip Code = 84065

Spectral Response Accelerations SMs and SM1

SMs = FaSs and SM1 = FvS1

Site Class D - Fa = 1.045 ,Fv = 1.533

Period Sa

(sec) (g)

0.2 1.188 SMs, Site Class D

1.0 0.717 SM1, Site Class D

Conterminous 48 States

2006 International Building Code

Zip Code = 84065

 $SDs = 2/3 \times SMs \text{ and } SD1 = 2/3 \times SM1$

Site Class D - Fa = 1.045, Fv = 1.533

Period Sa

(sec) (g)

0.2 0.792 SDs, Site Class D

1.0 0.478 SD1, Site Class D

ROJECT:	Panda E	X DVO (
KUJECI.	1 and L	VICAT

SUBJECT: Seismic design

BY: <u>CP</u> CK:

Design loads:

Roof dead = 20 psf

Exterior / Interior walls = 15 psf

Mechanical weight = 6,738 lbs

Exterior Walls -

(height = 23'-0") P= 17"+ 19" == 361"

(h=21'-0") P= 18+14.125= 30.125'

(h = |9'-0") P = 54' + 20' + 52' + 22' = |48'

B.O. Deck = 14'-0"

 $(5)^{25}$ $(\frac{14}{2})$ + (23-14) (36) = 8,640 lbs

|5psf| $\left(\frac{14}{2}\right) + (21-14)$ $\left(32,125\right) = 6,747$ lbs

15 psf $\left[\left(\frac{14}{2} \right) + \left(19 - 14 \right) \right] \left(148^{1} \right) = 26,640 \text{ lbs}$

Total weight = 8640 + 6747 + 26,640 = 42,027 lbs

Interior walls.-

Perimeter = 101 ft (h=14'-0")

(15 psf)(101 ft)(14/2) = 10,605 lbs

Roof dead load.-

(20 psf) (68 x 36) = 48,960 lbs

cont'd ->

)OR	ald	PROJECT:	Panda Express	JOB N
	oberts	SUBJECT:	Seismic design	DATE
Associ	ates, Inc.	ву:С.Р.	Ск:	SHT:
	Mech equ	uipment	•	
:	Total = 6	738 los		
<u>.</u>	Total loo	ad = 42,027 bs +	10,605 lbs + 48,960	bs + 6,738 lbs =
	Direction	North - South :		
	V = 1.0 (CO	0.757) ((108,330 (b))	= 12,617 lbs	
	12617 105	= 381 blt	: seismic contrels	
	36 ft			

Direction East - West:

68 {†

186 pH

wind controls

JOB NO. _____

__ SHIT: _____ OF _

108,330 bs

__ DATE ____

onald

PROJECT: Panda Express JOB NO.

oberts SUBJECT: Shearnall design DATE

Associates, Inc.

Consulting Engineers BY: CP. CK: SHT: OF

Distribution of tower load to shearwalls:

Transverse direction -

Load to wall 2: 68 - 49.9 (12.125)(35) + 68 - 44.5 (13)(35) + 5(35) = 446 lbsક્ટ્ર

Load to wall 3: 49.9(12.125)(35) + 44.5(13)(35) + 7(35) = 855 lbs

Longitudinal direction -

Load to wall 0: 36-12.83 (16)(35) + 36-18 (13)(35) + 5(35) = 763 lbs worst case

$$\frac{12.83}{36} (16)(35) + \frac{18}{36} (13)(35) + 5(35) = 602 \text{ lbs}$$

Total Load to Shearwalls.-

Wall (1) : 36(351) = 6,318 lbs

68 (231) + 8,300

68 (231) + 855 8,709 bs

PROJECT: Panda Express JOB NO.

oberts SUBJECT: Shearwall Design DATE

Associates, Inc.

Consulting Engineers BY: _____ CK: _____ SHT: ____ OF ____

Wall ①:

V= 6,318 lbs

Nailing length: $L_N = 33'-0"$ Anchor Length, $L_A = 32'-0"$

Height = 14'-0"

Nailing = $\frac{V}{LN} = \frac{6,318}{23} = 192 \text{ plf}$

Use. 8d @ 6" o.c. 15/32" CDX allow = 260 ptf

Anchors = VH = (6318)(14) = 2,76416s

Use HDSA or PHD2 allow = 4,010 lbs

Wall 2: V= 8,300 (bs

* Wind controls walls 2 & 3. Per code section 2306.4.1. shear capacities

LN = 32'-2"

LA = 31'-2"

can be increased 40%.

Height = 14'-0"

Nalling = 8,300 = 258 pf 32.17

15/32" CDX allow = 260 pH x 1.4 = 364 pH

Anchors = 8300 (14) = 3728 bs 31.17

Use HD5A allow = 4010 lbs

Wall 3: V= 8,709 lbs

LN = 9'-0"

LA = 8'-0"

Height = 14'-0"

Nailing = $8,709 = 968 \, \text{pff}$

Use 8d @ 4" o.c. e.f.

allow = 380 (2) = 760 plf x 1.4 = 1064 plf

Anchors = 8709(14) = 15,24

Use HD15

allow = 16,345 lbs

Ponald	PROJECT:
oberts	SUBJECT:

ROJECT: Panda Express

Diaphragm design

DATE ___

JOB NO.

Associates, Inc.

sy: C.P.

36

_ CK: _

SHT: _

EN . 6" O.C.

_ OF _

(Blocked diaphragm) lod nails Diaphragm nailing: 6,3|8 = Wall D: $BN = 6^{11} o.c.$ 93 pH (cate 3) (allow = 320 pff) 68 EN = 6" o.c. Wall (2): 8,300 BN = 6 0.c. 231 pff. (case) (allow = 320 pH) EN = 6" 0.C. 36 3: 8,709 242 pf. BN - 6" O.C. (case i) (allow = 320 plf)

		Panda Express		ļ·
oberts	SUBJECT:	tud Wall Design	DATE	
Associates, Inc.	BY: F.E.		SHT: O	F
Exterior Stud Height = 13"-		Spacing=16"0.C.	Actual height = (det. 4/s4)	14'-2" $-35/8"$ just seat appth CT $3"$ $13'-73/8"$
StudSize =	2-2,X6	Trib. Width:	= 18"-0"	(5 178
P=(20+30+39.1)((18.0)(16/12) =	= 2139 LBS (DL+ 4L)		
w= 16.5(16/	(2) = ZZpf	(Wind Load)		
[fc]2+	fb [1-(fo	(Fre)] < 1.0 ((NDS 3.9.Z)	
fc= PA =	2 39/(8.25)(2) =	(30 psi		
Fc' = 1688C	P			
Fre = Kre I	$\frac{1}{2} = \frac{0.3(1.0)}{(13.61)}$	$\frac{0 \times 10^{6}}{(12)/5.5}^{2} = 544 \text{ ps}$	i tcE Fct	544 = 0.322 1688
$C_{p} = \frac{1+0.32}{2(0.8)}$	$\frac{22}{Z(0)} - \sqrt{\frac{1+c}{Z(0)}}$	0.322 = 0.322 =	o. 296 .	
Fe' = 1688(0:	296) = 500	psi > 130 psi 0.2	r. For Comp.	
fb= Ms =>	$M = \frac{22(13.8)}{8}$	$61)^2 = 510 7 - 4$		
Fb = 510(12) 7.563(2	•	809		
Fb= 900 (1.6)	(1.15) = 169	56ps; > 405 ps; .	. O.K. For Bend	
(130/500) +	405 1656 [] - (13	$0.388 (1.0)$ Use 2- 2×1.0	O.N. Fa Cons.	
	•	Use 2-2x66	216"0.0.	

PROJECT: Panda Express

JOB NO.

SUBJECT: _

Chord design

Associates, Inc.
Consulting Engineers BY: _____CP ____CK:

_____ SHT: _

Chord design:

Front & backwall:

$$M = \frac{PL}{8} = \frac{6318(2)(36)}{8} = 56.8 \text{ ft} \cdot \text{k}$$

Chord force (tension + Compression) =
$$\frac{56.8}{68}$$
 = 0.83 k

check ledgen: 2x110

$$F_7 = 550(13.88) = 7.6 \times > 0.83 \times ... o.k.$$

Use 2X10 ledger

Side Walls:

$$M = PL = (8300 + 8709)(68) = 145 H.K$$

Chord force (tension + compression) =
$$\frac{145}{36}$$
 = 4.0 K

$$F_1 = (550)(5.25)(2) = 5.7k > 4.0k : 0.k$$

Use 2-2x6 top plate

Ronald
Poberts

PROJECT:	Panda Express	JOB NO
SUBJECT:	Jour design	DATE

Associates, Inc.

BY: _____ CP ____ CK: ______ SHT: _____ OF _____

1st. Joint from south.

Span = 36'-0"

DL = 20 psf

LL = 30 PSF

Parallel snow orift = 29.6 psf from 0' to 15'-2'

39.1

2.125

8.74

y= 29.6 psf

Tapered snow drift = 39.1 psf to 29.6 psf from 0' to $2'-1/2^{11}$ $29.6 psf to 39.1 psf from <math>|2'-0'|/2^{11} to |5'-2'|$

Point load (parapet wall):

Parapet neight = 20'-10"; b.o. trusses = 11'-6" $11'-6" + 26" = <math>13^1-8"$ (b.o. deck)

wall h = 20' - 10'' - 13' - 8'' = 7' - 2''

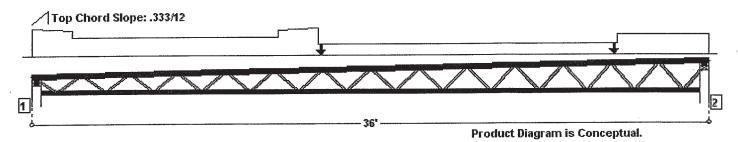
W = (15 psf)(7.167') = 108 pff

P = (108 plf)(1.625') = 175.5 lbs

+ (50 psf)(8")(1.625') = 54 |bs

P = 175.5 lbs + 54 lbs = 229.5 lbs @ 15'-4" and 31'-0'

• Drift: 39.1 psf from 31'-2" to 36'-0".



1st Joist from South

20"(end)-32"(end) TJM Open Web Truss @ 32" o/c

User: 2 5/22/2007 11:52:43 AM Page 1 Engine Version: 6.25.71

THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN CONTROLS FOR THE APPLICATION AND LOADS LISTED

LOADS:

Analysis is for a Joist Member.

Primary Load Group - Roof (psf): 30.0 Live at 125 % duration, 20.0 Dead

Vertical Loads:

Туре	Class	Live	Dead	Location	Application	Comment
Uniform(psf)	Roof(1.25)	29.6	0.0	0 To 15' 2"	Adds To	Parallel snow drift
Tapered(psf)	Roof(1.25)	39.1 To 29.6	0.0 To 0.0	0 To 2' 1 1/2"	Adds To	Tapered drift
Tapered(psf)	Roof(1.25)	29.6 To 39.1	0.0 To 0.0	13' 1/2" To 15' 2"	Adds To	Tapered drift
Point(lbs)	Roof(1.25)	0	230	15' 4"	-	Parapet
Point(lbs)	Roof(1.25)	0	230	31'	-	Parapet
Uniform(psf)	Roof(1.25)	39.1	0.0	31' 2" To 36'	Adds To	Snow drift

SUPPORTS:

Input Wertical Reactions (Ibs)
Width Live/Dead/Uplift/Total

Stud wall 5.50" 2732 / 1122 / 0 / 3854

Stud wall 5.50" 2238 / 1259 / 0 / 3497

-Left Support: Top-(TJM) S-Clip, Approx. clip height: 3 5/8", Approx. clip width: 7 3/4" -Right Support: Top-(TJM) S-Clip, Approx. clip height: 3 5/8", Approx. clip width: 7 3/4"

DESIGN CONTROLS:

	Maximum	Design	Control	Control	Location
Bearing Controls		N/A	N/A	Passed (89%)	Left Support
Web Controls		N/A	N/A	Passed (89.8%)	Web 2, Compression
Pin Controls		N/A	N/A	Passed (100%)	Hankinsons Control, Pin 11, Bottom
Chord Controls		N/A	N/A	Passed (95.9%)	Combined Loading, Tension, Pin 6, Bottom
Live Load Defl (in)		0.860	1.752	Passed (L/489)	MID Span 1 under Roof loading
Total Load Defl (in)		1.324	2.336	Passed (L/317)	MID Span 1 under Roof loading

⁻Deflection Criteria: STANDARD(LL:L/240,TL:L/180).

-Bracing(Lu): All compression edges (top and bottom) must be braced at 3' o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing is required to achieve member stability.

PROJECT INFORMATION:

Panda Express

OPERATOR INFORMATION:

Carmen Parra, E.I.T. Ronald A. Roberts Associates, Inc. 1420 W. Mockingbird Lane Suite 540 Dallas, TX 75247

Phone: 214-637-6299 Fax: 214-637-6997 cparra@rara.net

Copyright © 2006 by Trus Joist, a Weyerhaeuser Business TJM® is a registered trademark of Trus Joist.
TJH™,TJL™,TJLM™,TJLX™,TJS™,TJW™,TJL-T™ and TJW-T™ are trademarks of Trus Joist.

1st Joist from South

20"(end)-32"(end) TJM Open Web Truss @ 32" o/c

THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN CONTROLS FOR THE APPLICATION AND LOADS LISTED

ADDITIONAL NOTES:

User: 2 5/22/2007 11:52:43 AM

Page 2 Engine Version: 6.25.71

- -IMPORTANT! The analysis presented is output from software developed by Trus Joist (TJ). TJ warrants the sizing of its products by this software will be accomplished in accordance with TJ product design criteria and code accepted design values. The specific product application, input design loads, and stated dimensions have been provided by the software user. This output has not been reviewed by a TJ Associate.
- -Not all products are readily available. Check with your supplier or TJ technical representative for product availability.
- -THIS ANALYSIS FOR TRUS JOIST PRODUCTS ONLY! PRODUCT SUBSTITUTION VOIDS THIS ANALYSIS.
- -Allowable Stress Design methodology was used for Building Code IBC analyzing the TJ Custom product listed above.
- -The open web truss analysis presented is approximate. All open web trusses are custom designed to carry the specific design loads for each project. Actual truss capacity when fabricated is limited to that required to resist the specified loads. Do not use this analysis to verify the capacity of existing trusses.
- -Pricing Load (plf) = 204
- -Beveled plate required at left support
- -Beveled plate required at right support
- -Truss design includes consideration for partial span application live load.

PROJECT INFORMATION:

Panda Express

OPERATOR INFORMATION:

Carmen Parra, E.I.T.
Ronald A. Roberts Associates, Inc.
1420 W. Mockingbird Lane
Suite 540
Dallas, TX 75247

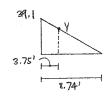
Phone: 214-637-6299
Fax: 214-637-6997

cparra@rara.net

Ronald
Poberts

PROJECT: Panda Express JOB NO. _____

SUBJECT: Joist design DATE


Associates, Inc.

BY: _____ CP ____ CK: _____ SHT: _____ OF _____

2nd. Joist from south:

Span =
$$36'-0"$$
 trib. width = $1^{1}-8"$

- Drift = 39.1 psf from 31'-2" to 36'-0"
- · Parallel drift: 22.3 psf from 0' to 15'-2"

- Tapered drift: 29.1 psf to 22.3 psf from 0' to 3'-9" 22.3 psf to 39.1 psf from 11'-5" to 15'-2"
- Roof (DL+LL) $\frac{1/2 \text{ tower width } 4' \cdot 2''/2}{(N_8 = (50 \text{ psf})(2.083^1) = 104 \text{ plf from } 15' \cdot 2'' \text{ to } 31' \cdot 2''}$
- · Point loads .-

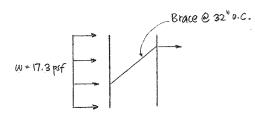
Parapot -

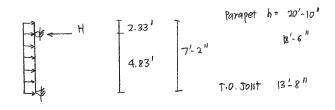
$$P_1 = (108 \text{ pH}) (10"/12) = 90 \text{ lbs}$$

$$(50 \text{ psf})(8")(10") = 28 \text{ lbs}$$

$$P_1 = 90 + 28 = 118 \text{ lbs}$$
 @ $15' \cdot 2''$ and $31' \cdot 2''$

onald
oberts
11

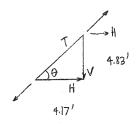

PROJECT: Panda Express JOB NO. _


Associates, Inc.

BY: _____ CK: _____ SHT: ____ OF _

SUBJECT: ______ DATE ___

P2 = wind from tower



For 1'-0" width of parapet

W= 17.3 psf (1.0') = 17.3 plf

$$H = \frac{w}{(1+a)^2} = \frac{17.3 \text{ plf}}{2(4.83')} (7.167')^2 = 92 \text{ lbs} (per foot of wall)$$

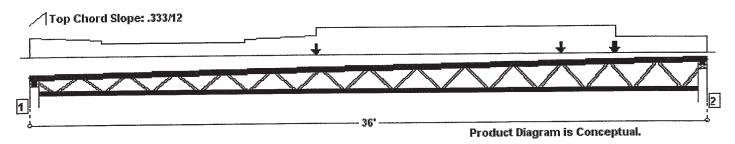
V = 92 lbs tan 49 = 106 lbs (per foot of wall)

$$P = (106 | bs)(1.33') = |41 | bs$$

Header reactions .-

1410 lbs @ 28'-3"

215 lbs @ 31'-1"



2nd Joist from South

20"(end)-32"(end) TJM Open Web Truss @ 16" o/c

User: 2 5/22/2007 11:37:32 AM Page 1 Engine Version: 6.25.71

THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN CONTROLS FOR THE APPLICATION AND LOADS LISTED

LOADS:

Analysis is for a Joist Member.

Primary Load Group - Roof (psf): 30.0 Live at 125 % duration, 20.0 Dead

Vertical Loads:

VOI HOOK EDWARD.			Donal Control	1	Annliantion	Comment
Type	Class	Live	Dead	Location	Application	Comment
Uniform(psf)	Roof(1.25)	39.1	0.0	31' 2" To 36'	Adds To	Drift along tower
Uniform(psf)	Roof(1.25)	22.3	0.0	0 To 15' 2"	Adds To	Parallel Drift
Tapered(psf)	Roof(1.25)	39.1 To 22.3	0.0 To 0.0	0 To 3' 9"	Adds To	Tapered drift
Tapered(psf)	Roof(1.25)	22.3 To 39.1	0.0 To 0.0	11' 5" To 15' 2"	Adds To	Tapered drift
Uniform(plf)	Roof(1.25)	54.0	0.0	15' 2" To 31' 2"	Adds To	Parapet wall load V
Uniform(plf)	Roof(1.25)	52.0	0.0	15' 2" To 31' 2"	Adds To	Roof (DL+LL) v
Point(lbs)	Roof(1.25)	0 :	59	15' 2"	-	Parapet
Point(lbs)	Roof(1.25)	0	59	31' 2"	-	Parapet
Point(lbs)	Roof(1.25)	0	71	15' 2"	-	Wind from tower
Point(lbs)	Roof(1.25)	0	71	15' 2"	-	Wind from tower
Point(lbs)	Roof(1.25)	0	705	28' 3"	-	Header reaction
Point(lbs)	Roof(1.25)	0	108	31' 1"	-	Header reaction

SUPPORTS:

-Left Support: Top-(TJM) S-Clip, Approx. clip height: 3 5/8", Approx. clip width: 7 3/4" -Right Support: Top-(TJM) S-Clip, Approx. clip height: 3 5/8", Approx. clip width: 7 3/4"

PROJECT INFORMATION:

Panda Express

OPERATOR INFORMATION:

Carmen Parra, E.I.T.
Ronald A. Roberts Associates, Inc.
1420 W. Mockingbird Lane
Suite 540
Dallas, TX 75247

Phone: 214-637-6299 Fax: 214-637-6997 cparra@rara.net

Copyright © 2006 by Trus Joist, a Weyerhaeuser Business
TJM® is a registered trademark of Trus Joist.
TJH™,TJL™,TJL™,TJLM™,TJLX™,TJS™,TJW™,TJL-T™ and TJW-T™ are trademarks of Trus Joist.

2nd Joist from South

20"(end)-32"(end) TJM Open Web Truss @ 16" o/c

User: 2 5/22/2007 11:37:32 AM Page 2 Engine Version: 6.25.71

THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN CONTROLS FOR THE APPLICATION AND LOADS LISTED

DESIGN CONTROLS:

	Maximum	Design	Control	Control	Location
Bearing Controls		N/A	N/A	Passed (80.4%)	Right Support
Web Controls		N/A	N/A	Passed (94.3%)	Web 23, Compression
Pin Controls		N/A	N/A	Passed (93.4%)	Hankinsons Control, Pin 10, Top
Chord Controls		N/A	N/A	Passed (80.8%)	Combined Loading, Tension, Pin 7, Bottom
Live Load Defl (in)		0.835	1.752	Passed (L/504)	MID Span 1 under Roof loading
Total Load Defl (in)		1.216	2.336	Passed (L/345)	MID Span 1 under Roof loading

-Deflection Criteria: STANDARD(LL:L/240,TL:L/180).

-Bracing(Lu): All compression edges (top and bottom) must be braced at 3' 1" o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing is required to achieve member stability.

ADDITIONAL NOTES:

- -IMPORTANT! The analysis presented is output from software developed by Trus Joist (TJ). TJ warrants the sizing of its products by this software will be accomplished in accordance with TJ product design criteria and code accepted design values. The specific product application, input design loads, and stated dimensions have been provided by the software user. This output has not been reviewed by a TJ Associate.
- -Not all products are readily available. Check with your supplier or TJ technical representative for product availability.
- -THIS ANALYSIS FOR TRUS JOIST PRODUCTS ONLY! PRODUCT SUBSTITUTION VOIDS THIS ANALYSIS.
- -Allowable Stress Design methodology was used for Building Code IBC analyzing the TJ Custom product listed above.
- -The open web truss analysis presented is approximate. All open web trusses are custom designed to carry the specific design loads for each project. Actual truss capacity when fabricated is limited to that required to resist the specified loads. Do not use this analysis to verify the capacity of existing trusses.
- -Pricing Load (plf) = 172
- -Beveled plate required at left support
- -Beveled plate required at right support
- -Truss design includes consideration for partial span application live load.

PROJECT INFORMATION:

Panda Express

OPERATOR INFORMATION:

Carmen Parra, E.I.T.
Ronald A. Roberts Associates, Inc.
1420 W. Mockingbird Lane
Suite 540
Dallas, TX 75247

Phone: 214-637-6299 Fax: 214-637-6997 cparra@rara.net

Copyright © 2006 by Trus Joist, a Weyerhaeuser Business
TJM® is a registered trademark of Trus Joist.
TJH™,TJL™,TJLM™,TJLX™,TJS™,TJW™,TJL-T™ and TJW-T™ are trademarks of Trus Joist.

onald	PROJECT:	Panda Express		_ JOB NO	
oberts	SUBJECT:	Joist design		_ DATE	
Associates, Inc.	BY: CP	CK:		SHT:	OF
8th Joist	from south.				
Span = 36'	- 0 ⁿ	39.1 psf	225# 225#	1 39	l psf
trib. width	· 35 "				
DL = 20 psf	· ·	9.74		D 7/L!	

8.74'

8.741

Drift = 39.1 psf

LT = 30 bst

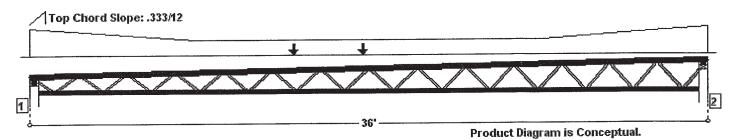
Point loads:

225 lbs @ 14'-0"

225 |bs @ 17-8"

o to 8.741 Tapered drift = 39.1 pcf to 0 pcf from 27.26' to 36' opst to 39.1 psf from

Ref. software output for design analysis.



8th Joist from South

20"(end)-32"(end) TJM Open Web Truss @ 32" o/c

User: 2 5/22/2007 11:10:14 AM Page 1 Engine Version: 6.25.71

THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN CONTROLS FOR THE APPLICATION AND LOADS LISTED

LOADS:

Analysis is for a Joist Member.

Primary Load Group - Roof (psf): 30.0 Live at 125 % duration, 20.0 Dead

Vertical Loads:

Туре	Class	Live	Dead	Location	Application	Comment
Point(lbs)	Roof(1.25)	0	225	17' 8"	-	RTU
Point(lbs)	Roof(1.25)	0	225	14'	-	RTU
Tapered(psf)	Roof(1.25)	39.1 To 0.0	0.0 To 0.0	0 To 8' 8 7/8"	Adds To	Tapered drift
Tapered(psf)	Roof(1.25)	0.0 To 39.1	0.0 To 0.0	27' 3 1/8" To 36'	Adds To	Tapered drift

SUPPORTS:

		Input Width	Vertical Reactions (lbs) Live/Dead/Uplift/Total
1	Stud wall	5.50"	1895 / 1213 / 0 / 3108
2	Stud wall	5.50"	1896 / 1158 / 0 / 3054

⁻Left Support: Top-(TJM) S-Clip, Approx. clip height: 3 5/8", Approx. clip width: 7 3/4" -Right Support: Top-(TJM) S-Clip, Approx. clip height: 3 5/8", Approx. clip width: 7 3/4"

DESIGN CONTROLS:

	Maximum	Design	Control	Control	Location
Bearing Controls		N/A	N/A	Passed (71.8%)	Left Support
Web Controls		N/A	N/A	Passed (96.1%)	Web 21, Compression
Pin Controls		N/A	N/A	Passed (92.2%)	Hankinsons Control, Pin 3, Bottom
Chord Controls		N/A	N/A	Passed (79.6%)	Combined Loading, Tension, Pin 6, Bottom
Live Load Defl (in)		0.613	1.752	Passed (L/686)	MID Span 1 under Roof loading
Total Load Defl (in)		1.121	2.336	Passed (L/375)	MID Span 1 under Roof loading

⁻Deflection Criteria: STANDARD(LL:L/240,TL:L/180).

PROJECT INFORMATION:

Panda Express

OPERATOR INFORMATION:

Carmen Parra, E.I.T. Ronald A. Roberts Associates, Inc. 1420 W. Mockingbird Lane Suite 540 Dallas, TX 75247

Phone: 214-637-6299 Fax: 214-637-6997 cparra@rara.net

Copyright [©] 2006 by Trus Joist, a Weyerhaeuser Business TJM[©] is a registered trademark of Trus Joist.
TJH[™],TJL[™],TJLM[™],TJLM[™],TJL[™],TJS[™],TJH[™],TJL-T[™] and TJW-T[™] are trademarks of Trus Joist.

⁻Bracing(Lu): All compression edges (top and bottom) must be braced at 3' 3" o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing is required to achieve member stability.

8th Joist from South

20"(end)-32"(end) TJM Open Web Truss @ 32" o/c

User: 2 5/22/2007 11:10:14 AM Page 2 Engine Version: 6.25.71

THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN CONTROLS FOR THE APPLICATION AND LOADS LISTED

ADDITIONAL NOTES:

- -IMPORTANT! The analysis presented is output from software developed by Trus Joist (TJ). TJ warrants the sizing of its products by this software will be accomplished in accordance with TJ product design criteria and code accepted design values. The specific product application, input design loads, and stated dimensions have been provided by the software user. This output has not been reviewed by a TJ Associate.
- -Not all products are readily available. Check with your supplier or TJ technical representative for product availability.
- -THIS ANALYSIS FOR TRUS JOIST PRODUCTS ONLY! PRODUCT SUBSTITUTION VOIDS THIS ANALYSIS.
- -Allowable Stress Design methodology was used for Building Code IBC analyzing the TJ Custom product listed above.
- -The open web truss analysis presented is approximate. All open web trusses are custom designed to carry the specific design loads for each project. Actual truss capacity when fabricated is limited to that required to resist the specified loads. Do not use this analysis to verify the capacity of existing trusses.
- -Pricing Load (plf) = 171
- -Beveled plate required at left support
- -Beveled plate required at right support
- -Truss design includes consideration for partial span application live load.

PROJECT INFORMATION:

Panda Express

OPERATOR INFORMATION:

Carmen Parra, E.I.T.
Ronald A. Roberts Associates, Inc.
1420 W. Mockingbird Lane
Suite 540
Dallas, TX 75247

Phone: 214-637-6299 Fax : 214-637-6997 cparra@rara.net

Copyright © 2006 by Trus Joist, a Weyerhaeuser Business
TJM[®] is a registered trademark of Trus Joist.
TJH[™],TJL[™],TJL[™],TJL[™],TJL[™],TJL[™],TJL-T[™] and TJW-T[™] are trademarks of Trus Joist.

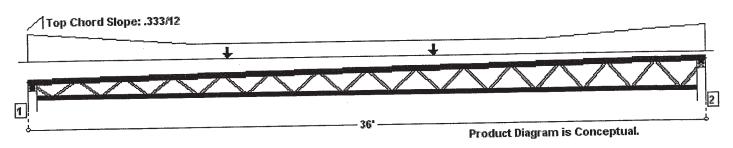
•					
Donald	PROJECT:	Panda	Express	JOB NO	
oberts	SUBJECT:	Joist	æsign	Date	
Associates, Inc.	BY:CP		CK:	SHT:	OF
11th poist	from south				
Span = 36'-	o"		•		
trib. width	321		and the second second		
DL= 20 pif					
LL= 30 psf					
onft = 39.	1 psf				
Tapered d		1	from 0' to 8.74'		
to a large and the second of t	O. Prif	to 39.1 psf	from 27,26' to 30	5 [*]	

Point loads:

375 lbs @ 21'-6"

375 lbs @ 10'-7"

Ref. software output for design analysis.



11th Joist from South

20"(end)-32"(end) TJM Open Web Truss @ 32" o/c

User: 2 5/22/2007 11:15:21 AM Page 1 Engine Version: 6.25.71

THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN CONTROLS FOR THE APPLICATION AND LOADS LISTED

LOADS:

Analysis is for a Joist Member.

Primary Load Group - Roof (psf): 30.0 Live at 125 % duration, 20.0 Dead

Vertical Loads:

Tapered(psf)		0 39.1 To 0.0	Dead 375 375 0.0 To 0.0 0.0 To 0.0	Location 21' 6" 10' 7" 0 To 8' 8 7/8" 27' 3 1/8" To 36'	- Adds To Adds To	RTU RTU Tapered Drift Tapered Drift
Tapered(psf)	Roof(1.25)	0.0 To 39.1	0.0 To 0.0	27' 3 1/8" 10 36'	Adds 10	Tapered Drift

SUPPORTS:

1 2

	Input Width	Vertical Reactions (lbs) Live/Dead/Uplift/Total
Stud wall	5.50"	1895 / 1377 / 0 / 3272
Stud wall	5.50"	1896 / 1294 / 0 / 3190

-Left Support: Top-(TJM) S-Clip, Approx. clip height: 3 5/8", Approx. clip width: 7 3/4" -Right Support: Top-(TJM) S-Clip, Approx. clip height: 3 5/8", Approx. clip width: 7 3/4"

DESIGN CONTROLS:

Maximum Bearing Controls Web Controls Pin Controls Chord Controls Live Load Defl (in) Total Load Defl (in)	Design N/A N/A N/A N/A 0.613 1.185	Control N/A N/A N/A N/A 1.752 2.336	Control Passed (75.6%) Passed (88.3%) Passed (95.9%) Passed (82.6%) Passed (L/686) Passed (L/355)	Location Left Support Web 2, Compression Hankinsons Control, Pin 11, Bottom Combined Loading, Tension, Pin 6, Bottom MID Span 1 under Roof loading MID Span 1 under Roof loading
--	--	---	---	--

⁻Deflection Criteria: STANDARD(LL:L/240,TL:L/180).

PROJECT INFORMATION:

Panda Express

OPERATOR INFORMATION:

Carmen Parra, E.I.T. Ronald A. Roberts Associates, Inc.

1420 W. Mockingbird Lane Suite 540

Dallas, TX 75247

Phone: 214-637-6299 Fax : 214-637-6997

cparra@rara.net

Copyright © 2006 by Trus Joist, a Weyerhaeuser Business
TJM® is a registered trademark of Trus Joist.
TJH™,TJL™,TJLM™,TJLX™,TJS™,TJM™,TJL-T™ and TJW-T™ are trademarks of Trus Joist.

⁻Bracing(Lu): All compression edges (top and bottom) must be braced at 3' 2" o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing is required to achieve member stability.

11th Joist from South

20"(end)-32"(end) TJM Open Web Truss @ 32" o/c

User: 2 5/22/2007 11:15:22 AM Page 2 Engine Version: 6.25.71

THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN CONTROLS FOR THE APPLICATION AND LOADS LISTED

ADDITIONAL NOTES:

- -IMPORTANT! The analysis presented is output from software developed by Trus Joist (TJ). TJ warrants the sizing of its products by this software will be accomplished in accordance with TJ product design criteria and code accepted design values. The specific product application, input design loads, and stated dimensions have been provided by the software user. This output has not been reviewed by a TJ Associate.
- -Not all products are readily available. Check with your supplier or TJ technical representative for product availability.
- -THIS ANALYSIS FOR TRUS JOIST PRODUCTS ONLY! PRODUCT SUBSTITUTION VOIDS THIS ANALYSIS.
- -Allowable Stress Design methodology was used for Building Code IBC analyzing the TJ Custom product listed above.
- -The open web truss analysis presented is approximate. All open web trusses are custom designed to carry the specific design loads for each project. Actual truss capacity when fabricated is limited to that required to resist the specified loads. Do not use this analysis to verify the capacity of existing trusses.
- -Pricing Load (plf) = 179
- -Beveled plate required at left support
- -Beveled plate required at right support
- -Truss design includes consideration for partial span application live load.

PROJECT INFORMATION:

Panda Express

OPERATOR INFORMATION:

Carmen Parra, E.I.T. Ronald A. Roberts Associates, Inc. 1420 W. Mockingbird Lane Suite 540 Dallas, TX 75247

Phone: 214-637-6299 Fax : 214-637-6997 cparra@rara.net

Copyright © 2006 by Trus Joist, a Weyerhaeuser Business TJM® is a registered trademark of Trus Joist.
TJH™,TJL™,TJLM™,TJLX™,TJS™,TJM™,TJL-T™ and TJW-T™ are trademarks of Trus Joist.

PROJECT: Panda Express

_____ JOB NO.

SUBJECT: Joist design DATE

Associates, Inc.
Consulting Engineers

BY: _____ CK: ______ SHT: _____ OF

12th Joist from North

Span = 36'-0"

· WI = DL + LL

DL = 20 psf (2.667') = 54 plf

LL = 30 psf (2.667') = 80 pH

truss depth

• Parapet wall. - parapel h = 23'-0"; b.o. trusses = 11'-6"

(b.o.deck)

wall h = 23' - 0'' - 14' - 2'' = 8' - 10''

 $W_3 = (15 psf)(8.83') = 133 plf$

· Roof (DL+UL)

 $W_3 = (50 \text{ psf})(0.667') = 34 \text{ pH}$

· Drift.

Y= 33 psf

7.4

driftag = 39.1 + 33

W4 = (36 psf)(1,33') = 48 pxf

· Ws = 39.1prf (2.667') = 104 plf

· Point loads .-

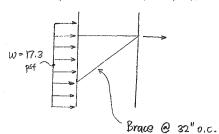
Parapet .-

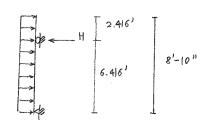
 $P_1 = (133 \, \text{pH}) (1.33') = 178 \, \text{lbs}$

+ (50 psf)(2.25')(1.33') = 150 |bs

 $P_1 = 178 \text{ lbs} + 150 \text{ lbs} = 328 \text{ lbs}$

Ronald	PROJECT:	Panda Express	JOB NO
oberts	SUBJECT:	Joist design	DATE _

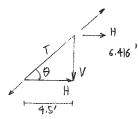

T: ______ JOB NO.____


Associates, Inc.

Consulting Engineers BY: _____ CF ___ CK: _____ SHT: ____ OF ___

P2 = 338 lbs (RTV)

P4: wind from tower



For 1'-0" width of parapet

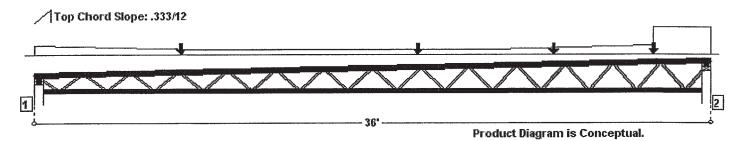
$$W = (17.3 \text{ psf})(1.0) = 17.3 \text{ psf}$$

$$H = \frac{w}{2} (1+a)^2 = \frac{17.3 \text{ plf}}{2(6.416)} (8.83)^2 = 105 \text{ lbs} \text{ (per foot of wall)}$$

$$\tan \theta = \underbrace{6.416}_{4.5}$$

$$\theta = 55^{\circ}$$

$$\tan 55^{\circ} = V$$


 $P_4 = (150 \text{ lbs})(1.33') = 200 \text{ lbs}$

12th Joist from North

20"(end)-32"(end) TJM Open Web Truss @ 32" o/c

User: 2 5/22/2007 11:20:00 AM Page 1 Engine Version: 6.25.71

THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN CONTROLS FOR THE APPLICATION AND LOADS LISTED

LOADS:

Analysis is for a Joist Member.

Primary Load Group - Roof (psf): 30.0 Live at 125 % duration, 20.0 Dead

Vertical Loads:

V CI tical Loads.						
Туре	Class	Live	Dead	Location	Application	Comment
Uniform(plf)	Roof(1.25)	0.0	133.0	33' To 36'	Adds To	Parapet wall load √
Uniform(plf)	Roof(1.25)	20.0	14.0	33' To 36'	Adds To	Roof (DL+LL)
Uniform(plf)	Roof(1.25)	48.0	0.0	33' To 36'	Adds To	Drift
Tapered(psf)	Roof(1.25)	0.0 To 39.1	0.0 To 0.0	24' 3 1/8" To 33'	Adds To	Snow drift
Point(lbs)	Roof(1.25)	0	328	33'	-	Parapet point load
Point(lbs)	Roof(1.25)	0	338	20' 5"	-	RTU
Point(lbs)	Roof(1.25)	0	338	27' 8"	-	RTU
Point(lbs)	Roof(1.25)	0	95	7' 10"	-	EF
Point(lbs)	Roof(1.25)	0	200	33'	-	Wind from tower
Tapered(psf)	Roof(1.25)	39.1 To 0.0	0.0 To 0.0	0 To 8' 8 7/8"	Adds To	Snow drift

SUPPORTS:

| Input Width | Vertical Reactions (lbs) | Width | Live/Dead/Uplift/Total | Stud wall | 5.50" | 1940 / 1307 / 0 / 3247 | 2 Stud wall | 5.50" | 2055 / 2354 / 0 / 4409

-Left Support: Top-(TJM) S-Clip, Approx. clip height: 3 5/8", Approx. clip width: 7 3/4" -Right Support: Top-(TJM) S-Clip, Approx. clip height: 3 5/8", Approx. clip width: 7 3/4"

DESIGN CONTROLS:

	Maximum	Design	Control	Control	Location
Bearing Controls		N/A	N/A	Passed (101.8%)	Right Support
Web Controls		N/A	N/A	Passed (96.3%)	Web 23, Compression
Pin Controls		N/A	N/A	Passed (99.9%)	Perpendicular to Grain Control, Pin 13, Top
Chord Controls		N/A	N/A	Passed (85.9%)	Combined Loading, Tension, Pin 7, Bottom
Live Load Defl (in)		0.649	1.752	Passed (L/647)	MID Span 1 under Roof loading
Total Load Defl (in)		1.241	2.336	Passed (L/339)	MID Span 1 under Roof loading

⁻Deflection Criteria: STANDARD(LL:L/240,TL:L/180).

-Bracing(Lu); All compression edges (top and bottom) must be braced at 3' 1" o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing is required to achieve member stability.

PROJECT INFORMATION:

Panda Express

OPERATOR INFORMATION:

Carmen Parra, E.I.T.
Ronald A. Roberts Associates, Inc.
1420 W. Mockingbird Lane
Suite 540
Dallas, TX 75247
Phone: 214-637-6299

Phone: 214-637-6299
Fax: 214-637-6997
cparra@rara.net

Copyright $^{\circ}$ 2006 by Trus Joist, a Weyerhaeuser Business TJM $^{\circ}$ is a registered trademark of Trus Joist. TJH $^{\infty}$, TJL $^{\infty}$, TJLM $^{\infty}$, TJL $^{\infty}$, TJL $^{\infty}$ and TJW-T $^{\infty}$ are trademarks of Trus Joist.

12th Joist from North

20"(end)-32"(end) TJM Open Web Truss @ 32" o/c

User: 2 5/22/2007 11:20:00 AM Page 2 Engine Version: 6.25.71

THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN CONTROLS FOR THE APPLICATION AND LOADS LISTED

ADDITIONAL NOTES:

- -IMPORTANT! The analysis presented is output from software developed by Trus Joist (TJ). TJ warrants the sizing of its products by this software will be accomplished in accordance with TJ product design criteria and code accepted design values. The specific product application, input design loads, and stated dimensions have been provided by the software user. This output has not been reviewed by a TJ Associate.
- -Not all products are readily available. Check with your supplier or TJ technical representative for product availability.
- -THIS ANALYSIS FOR TRUS JOIST PRODUCTS ONLY! PRODUCT SUBSTITUTION VOIDS THIS ANALYSIS.
- -Allowable Stress Design methodology was used for Building Code IBC analyzing the TJ Custom product listed above.
- -The open web truss analysis presented is approximate. All open web trusses are custom designed to carry the specific design loads for each project. Actual truss capacity when fabricated is limited to that required to resist the specified loads. Do not use this analysis to verify the capacity of existing trusses.
- -Pricing Load (plf) = 213
- -Beveled plate required at left support
- -Beveled plate required at right support
- -Truss design includes consideration for partial span application live load.

PROJECT INFORMATION:

Panda Express

OPERATOR INFORMATION:

Carmen Parra, E.I.T.
Ronald A. Roberts Associates, Inc.
1420 W. Mockingbird Lane
Suite 540
Dallas, TX 75247

Phone: 214-637-6299 Fax: 214-637-6997 cparra@rara.net

Copyright $^{\circ}$ 2006 by Trus Joist, a Weyerhaeuser Business TJM $^{\circ}$ is a registered trademark of Trus Joist. TJH $^{\infty}$, TJL $^{\infty}$, TJL $^{\infty}$, TJLX $^{\infty}$, TJLX $^{\infty}$, TJS $^{\infty}$, TJW $^{\infty}$, TJL- $^{\infty}$ and TJW- $^{\infty}$ are trademarks of Trus Joist.

Ponald	PROJECT:	Panda Expr	ess	JOB NO	
oberts	SUBJECT:	Joist de		DATE	
Associates, Inc.	ву:	CK: _		SHT:	OF
9th Joist fo	rom North				
span = 36'-0	, "				
• W1 = DL + U	•				
DL = 20 psf ((2.667') = 54 plf				
LL= 30 psf	(2.667') = 80 plf				
• W5 = 39-1 psf	to 0 psf				
· Point loads:					
Parapet	P ₁ = 328 lbs (2) =	656 lbs both ands	(since thib.width i		Pr will be doubled.

• .P4 = wind from tower = 400 lbs

20"(end)-32"(end) TJM Open Web Truss @ 32" o/c

THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN CONTROLS FOR THE APPLICATION AND LOADS LISTED

Top Chord Slope: .333/12

1

Product Diagram is Conceptual.

LOADS:

Analysis is for a Joist Member.

User: 2 5/22/2007 11:26:46 AM

Page 1 Engine Version: 6.25.71

Primary Load Group - Roof (psf): 30.0 Live at 125 % duration, 20.0 Dead

Vertical Loads:

Туре	Class	Live	Dead	Location	Application	Comment
Tapered(psf)	Roof(1.25)	0.0 To 39.1	0.0 To 0.0	24' 3 1/8" To 33'	Adds To	Snow drift
Point(lbs)	Roof(1.25)	0	656	33'	-	Parapet point load
Point(lbs)	Roof(1.25)	0	656	4'	_	Parapet point load
Point(lbs)	Roof(1.25)	0	400	4'	-	Wind from tower
Uniform(plf)	Roof(1.25)	20.0	14.0	0 To 4'	Adds To	Roof (DL+LL)
Uniform(plf)	Roof(1.25)	48.0	0.0	0 To 4'	Adds To	Drift
Tapered(psf)	Roof(1.25)	39.1 To 0.0	0.0 To 0.0	4' To 12' 8 7/8"	Adds To	Snow drift

SUPPORTS:

 Input Width
 Vertical Reactions (lbs) Live/Dead/Uplift/Total

 Stud wall
 5.50"
 2142 / 2011 / 0 / 4153

 Stud wall
 5.50"
 1921 / 1678 / 0 / 3599

DESIGN CONTROLS:

	Maximum	Design	Control	Control	Location
Bearing Controls		N/A	N/A	Passed (95.9%)	Left Support
Web Controls		N/A	N/A	Passed (95.7%)	Web 4, Compression
Pin Controls		N/A	N/A	Passed (100.1%)	Hankinsons Control, Pin 1, Bottom
Chord Controls		N/A	N/A	Passed (84.2%)	Combined Loading, Tension, Pin 6, Bottom
Live Load Defl (in)		0.706	1.752	Passed (L/595)	MID Span 1 under Roof loading
Total Load Defl (in)		1.229	2.336	Passed (L/342)	MID Span 1 under Roof loading

⁻Deflection Criteria: STANDARD(LL:L/240,TL:L/180).

PROJECT INFORMATION:

Panda Express

OPERATOR INFORMATION:

Carmen Parra, E.I.T.
Ronald A. Roberts Associates, Inc.
1420 W. Mockingbird Lane
Suite 540
Dallas, TX 75247

Phone: 214-637-6299
Fax : 214-637-6997
cparra@rara.net

Copyright $^{\circ}$ 2006 by Trus Joist, a Weyerhaeuser Business TJM $^{\circ}$ is a registered trademark of Trus Joist. TJH $^{\circ}$,TJL $^{\circ}$,TJLM $^{\circ}$

⁻Left Support: Top-(TJM) S-Clip, Approx. clip height: 3 5/8", Approx. clip width: 7 3/4"

⁻Right Support: Top-(TJM) S-Clip, Approx. clip height: 3 5/8", Approx. clip width: 7 3/4"

⁻Bracing(Lu): All compression edges (top and bottom) must be braced at 3' 2" o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing is required to achieve member stability.

9th Joist from North

User: 2 5/22/2007 11:26:46 AM Page 2 Engine Version: 6.25.71

THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN CONTROLS FOR THE APPLICATION AND LOADS LISTED

20"(end)-32"(end) TJM Open Web Truss @ 32" o/c

ADDITIONAL NOTES:

-IMPORTANT! The analysis presented is output from software developed by Trus Joist (TJ). TJ warrants the sizing of its products by this software will be accomplished in accordance with TJ product design criteria and code accepted design values. The specific product application, input design loads, and stated dimensions have been provided by the software user. This output has not been reviewed by a TJ Associate.

- -Not all products are readily available. Check with your supplier or TJ technical representative for product availability.
- -THIS ANALYSIS FOR TRUS JOIST PRODUCTS ONLY! PRODUCT SUBSTITUTION VOIDS THIS ANALYSIS.
- -Allowable Stress Design methodology was used for Building Code IBC analyzing the TJ Custom product listed above.
- -The open web truss analysis presented is approximate. All open web trusses are custom designed to carry the specific design loads for each project. Actual truss capacity when fabricated is limited to that required to resist the specified loads. Do not use this analysis to verify the capacity of existing trusses.
- -Pricing Load (plf) = 215
- -Beveled plate required at left support
- -Beveled plate required at right support
- -Truss design includes consideration for partial span application live load.

PROJECT INFORMATION:

Panda Express

OPERATOR INFORMATION:

Carmen Parra, E.I.T. Ronald A. Roberts Associates, Inc. 1420 W. Mockingbird Lane Suite 540 Dallas, TX 75247

Phone: 214-637-6299 Fax : 214-637-6997 cparra@rara.net

Copyright $^{\Theta}$ 2006 by Trus Joist, a Weyerhaeuser Business TJM $^{\Theta}$ is a registered trademark of Trus Joist. TJH $^{\infty}$,TJL $^{\infty}$,TJLM $^{\infty}$,TJLX $^{\infty}$,TJJX $^{\infty}$,TJJW $^{\infty}$,TJLT.T $^{\infty}$ and TJW-T $^{\infty}$ are trademarks of Trus Joist.

PROJECT:	Panda	Express	JOB NO.
	10111001	PV Licos	

SUBJECT:	Joist	design	DATE	

Associates, Inc.
Consulting Engineers BY: CP

2nd. Joist from north:

• Parallel drift: 18 psf from 0' to 11'-7" & from 24'-7" to 36

29.1

y = 18 psf

8.74

3.99

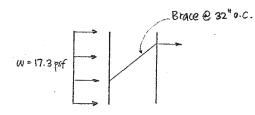
LL = 30 psf

- Tapered drift: 29.1 psf to 18 psf from 0' to 4!-9" & from 24'-7" to 29'-4" 18 psf to 39.1 psf from 6'-10" to 11'-7" & from 31'-3" to 36'-0"
- Roof (DL+LL) $\frac{\sqrt{2} \text{ tower width } 6/2}{(W_2 = (50 \text{ psf})(2.0))} = 150 \text{ plf from } 11'-7" \text{ to } 24'-7"}$
- · Point loads .-

Parapot -

$$P_1 = (108 \text{ pH}) (1.33) = 144 \text{ lbs}$$

$$(50 \text{ psf}) (8") (1.33') = 45 \text{ lbs}$$

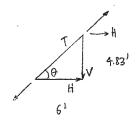

$$P_1 = 144 + 45 = 189 | 105 | @ 11'-7" and 24'-7"$$

SUBJECT: Joist design DATE

Associates, Inc.

Consulting Engineers BY: _____ CK: _____ SHT: ____ OF __

P2: wind from tower



Parapet
$$h = 20'-10$$
 $4.83'$
 $7'-2''$
 $8'-6''$
 $7.0. \text{ Joht} \quad 13-8''$

For 1'-0" width of parapet

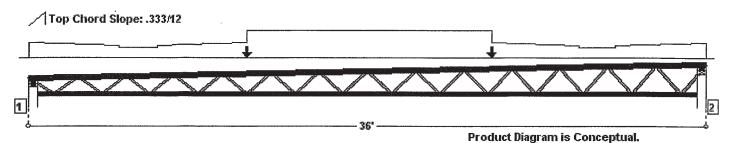
W- 17.3 psf (1.01) = 17.3 plf

$$H = \frac{W}{(1+a)^2} = \frac{17.3 \text{ plf}}{2(4.83')} (7.167')^2 = 92 \text{ lbs} \text{ (per foot of wall)}$$

$$\tan \theta = \frac{4.83}{6!}$$

$$V = 92 lbs tan 39 = 75 lbs (per foot of wall)$$

P = (75 | bs)(1.33') = 100 | bs


Drift .-39.1 psf (6.5 % / 12) = 21.2 ptf from 11'-7'' to 24'-7'' 2nd Joist from North

20"(end)-32"(end) TJM Open Web Truss @ 16" o/c

User: 2 5/22/2007 12:45:12 PM

Page 1 Engine Version: 6.25.71

THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN CONTROLS FOR THE APPLICATION AND LOADS LISTED

LOADS:

Analysis is for a Joist Member.

Primary Load Group - Roof (psf): 30.0 Live at 125 % duration, 20.0 Dead

Туре	Class	Live	Dead	Location	Application	Comment
Uniform(psf)	Roof(1.25)	18.0	0.0	0 To 11' 7"	Adds To	Parallel drift
Uniform(psf)	Roof(1.25)	18.0	0.0	24' 7" To 36'	Adds To	Parallel drift
Tapered(psf)	Roof(1.25)	39.1 To 18.0	0.0 To 0.0	0 To 4' 9"	Adds To	Tapered drift
Tapered(psf)	Roof(1.25)	39.1 To 18.0	0.0 To 0.0	24' 7" To 29' 4"	Adds To	Tapered drift
Tapered(psf)	Roof(1.25)	18.0 To 39.1	0.0 To 0.0	6' 10" To 11' 7"	Adds To	Tapered drift
Tapered(psf)	Roof(1.25)	18.0 To 39.1	0.0 To 0.0	31' 3" To 36'	Adds To	Tapered drift
Uniform(plf)	Roof(1.25)	0.0	54.0	11' 7" To 24' 7"	Adds To	Parapet wall
Uniform(plf)	Roof(1.25)	0.0	75.0	11' 7" To 24' 7"	Adds To	Roof (DL+LL)
Point(lbs)	Roof(1.25)	0 .	95	. 11' 7"	-	Parapet
Point(lbs)	Roof(1.25)	0	95	24' 7"	-	Parapet
Point(lbs)	Roof(1.25)	0	50	11' 7"	-	Wind from tower
Point(lbs)	Roof(1.25)	0	50	24' 7"	-	Wind from tower
Uniform(plf)	Roof(1.25)	10.6	0.0	11' 7" To 24' 7"	Adds To	Drift along tower

SUPPORTS:

		Input Width	Vertical Reactions (lbs) Live/Dead/Uplift/Total
1	Stud wall	5.50"	1426 / 1459 / 0 / 2885
2	Stud wall	5.50"	1427 / 1469 / 0 / 2896

-Left Support: Top-(TJM) S-Clip, Approx. clip height: 3 5/8", Approx. clip width: 7 3/4"

-Right Support: Top-(TJM) S-Clip, Approx. clip height: 3 5/8", Approx. clip width: 7 3/4"

PROJECT INFORMATION:

Panda Express

OPERATOR INFORMATION:

Carmen Parra, E.I.T. Ronald A. Roberts Associates, Inc. 1420 W. Mockingbird Lane Suite 540 Dallas, TX 75247

Phone: 214-637-6299 Fax : 214-637-6997 cparra@rara.net

Copyright © 2006 by Trus Joist, a Weyerhaeuser Business TJM® is a registered trademark of Trus Joist.
TJH™,TJL™,TJLM™,TJLX™,TJS™,TJJW™,TJL-T™ and TJW-T™ are trademarks of Trus Joist.

2nd Joist from North

20"(end)-32"(end) TJM Open Web Truss @ 16" o/c

User: 2 5/22/2007 12:45:13 PM

Page 2 Engine Version: 6.25.71

THIS PRODUCT MEETS OR EXCEEDS THE SET DESIGN CONTROLS FOR THE APPLICATION AND LOADS LISTED

DESIGN CONTROLS:

	Maximum	Design	Control	Control	Location
Bearing Controls		N/A	N/A	Passed (66.9%)	Right Support
Web Controls		N/A	N/A	Passed (95.7%)	Web 23, Compression
Pin Controls		N/A	N/A	Passed (98.5%)	Hankinsons Control, Pin 10, Bottom
Chord Controls		N/A	N/A	Passed (82.6%)	Combined Loading, Tension, Pin 7, Bottom
Live Load Defl (in)		0.486	1.752	Passed (L/864)	MID Span 1 under Roof loading
Total Load Defl (in)		1.237	2.336	Passed (L/340)	MID Span 1 under Roof loading

⁻Deflection Criteria: STANDARD(LL:L/240,TL:L/180).

ADDITIONAL NOTES:

- -IMPORTANT! The analysis presented is output from software developed by Trus Joist (TJ). TJ warrants the sizing of its products by this software will be accomplished in accordance with TJ product design criteria and code accepted design values. The specific product application, input design loads, and stated dimensions have been provided by the software user. This output has not been reviewed by a TJ Associate.
- -Not all products are readily available. Check with your supplier or TJ technical representative for product availability.
- -THIS ANALYSIS FOR TRUS JOIST PRODUCTS ONLY! PRODUCT SUBSTITUTION VOIDS THIS ANALYSIS.
- -Allowable Stress Design methodology was used for Building Code IBC analyzing the TJ Custom product listed above.
- -The open web truss analysis presented is approximate. All open web trusses are custom designed to carry the specific design loads for each project. Actual truss capacity when fabricated is limited to that required to resist the specified loads. Do not use this analysis to verify the capacity of existing trusses.
- -Pricing Load (plf) = 161
- -Beveled plate required at left support
- -Beveled plate required at right support
- -Truss design includes consideration for partial span application live load.

PROJECT INFORMATION:

Panda Express

OPERATOR INFORMATION:

Carmen Parra, E.I.T. Ronald A. Roberts Associates, Inc. 1420 W. Mockingbird Lane Suite 540 Dallas, TX 75247

Phone: 214-637-6299 Fax : 214-637-6997 cparra@rara.net

Copyright $^{\bullet}$ 2006 by Trus Joist, a Weyerhaeuser Business TJM $^{\circ}$ is a registered trademark of Trus Joist. TJH $^{\infty}$, TJL $^{\infty}$, TJLM $^{\infty}$, TJLX $^{\infty}$, TJJN $^{\infty}$, TJJN $^{\infty}$, TJJL $^{\infty}$, TJL $^{\infty}$, TJLX $^{\infty}$, TJLX $^{\infty}$, TJVN $^{\infty}$, TJL $^{\infty}$, TJL $^{\infty}$ are trademarks of Trus Joist.

⁻Bracing(Lu); All compression edges (top and bottom) must be braced at 3' 1" o/c unless detailed otherwise. Proper attachment and positioning of lateral bracing is required to achieve member stability.

Poi	nald	
	Robert	S

DDO IECT	Panda	Eupleace	
PROJECT:	1 arroa	FX Press	

JOB NO.

Associates, Inc.

BY: _____ CP ____ CK:

SUBJECT: Header design

DATE

SHT: _____ OF

Header @ hatch.

Span = 3'-6"

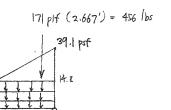
Reaction from 3rd. joist south: span = 28'-4"

DL = 20 psf (2.667') = 54 plf

LL = 30 psf (2.667') = 80 plf

· Parallel snow drift = 14.8 psf (along joist)

- · Tapered drift = 14.8 psf to 39.1 psf from 22.91' to 28.33'
- from 0' to 1' · Tapered drift (left side): 4.4 psf


156/65

· Point loads :

156 lbs @ 11'-5"

156 lbs @ 21'-5"

2.2 pf (2.667) 156 lbs

LL = 80 plf

Drift = 14.8 psf (2.667') = 40 plf

$$\geq M_B = 0 = -54 \text{ pH} (28.33') (28.33/2) - 80 \text{ pH} (28.33') (28.33/2) - 40 \text{ pH} (19.5)(19.5/2) - 6 lbs (27.83)$$

- 156 lbs (16.83') - 156 lbs (6.917') - 456 lbs (2.91) + 28.33 RA

RA = 2350 lbs

1.
-

Ponald	PROJECT:	Panda Express	JOB NO	
oberts	SUBJECT:	Header design	DATE	
Associates, Inc.	BY: CP	CK:	SHT:	OF
Actual he	ader will cary:	CDL, LL, point load)		
	23501bs			
_	g.			

Ref. enercalc software output for design analysis.

Title : Dsgnr: Description : Job #
Date: 10:58AM, 21 MAY 07

Scope:

Rev: 580004 User: KW-0606725, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software Page **General Timber Beam** headers.ecw:Calculations Header at hatch Description Code Ref: 1997/2001 NDS, 2000/2003 IBC, 2003 NFPA 5000. Base allowables are user defined **General Information**Lu 3.50 ft 3.50 ft Section Name Center Span 6x8 0.00 ft Beam Width 5.500 in Left Cantilever ftLu ftLu 7.500 in Right Cantilever 0.00 ft Beam Depth Douglas Fir - Larch, No.2 Member Type Sawn Fb Base Allow 900.0 psi 90.0 psi 1.250 Load Dur. Factor Fv Allow Beam End Fixity Pin-Pin Fc Allow 625.0 psi 1,600.0 ksi Ε **Full Length Uniform Loads** 54.00 #/ft 80.00 #/ft LL Center #/ft Left Cantilever DL #/ft LL #/ft #/ft LL Right Cantilever DL **Point Loads** lbs Dead Load 2,350.0 lbs lbs lbs lbs lbs lbs Live Load lbs lbs lbs lbs lbs lbs lbs 0.000 ft ...distance 0.000 ft 0.000 ft 0.000 ft 0.000 ft 0.000ft 1.750 ft Summary Beam Design OK Span= 3.50ft, Beam Width = 5.500in x Depth = 7.5in, Ends are Pin-Pin 0.469 : 1 Max Stress Ratio Maximum Shear * 1.5 2.0 k Maximum Moment 2.3 k-ft 4.8 k-ft Allowable 4.6 k Allowable 1.750 ft Shear: @ Left 1.41 k Max. Positive Moment 2.26 k-ft at 0.000 ft @ Right 1.41 k Max. Negative Moment 0.00 k-ft at 0.000 in Max @ Left Support 0.00 k-ft Camber: @ Left @ Center 0.018 in 0.00 k-ft Max @ Right Support @ Right 0.000 in 4.83 Max. M allow Reactions... Left DL 1.27 k Max 1.41 k fν 48.25 psi fb 526.30 psi Right DL 1.27 k Max 1.41 k 1,123.00 psi Fν 112.50 psi Fb **Deflections** Total Load Left Cantilever... Dead Load Dead Load Center Span... Total Load -0.013 in Deflection 0.000 in 0.000 in Deflection -0.012 in ...Location 1.750 ft ...Length/Defl 0.0 0.0 1.750 ft ...Length/Defl 3,410.9 3,185.06 Right Cantilever... Camber (using 1.5 * D.L. Defl) ... Deflection 0.000 in 0.000 in 0.018 in ...Length/Defl 0.0 0.0 @ Center 0.000 in @ Left

@ Right

0.000 in

Title : Dsgnr: Description : **Job # Date:** 10:58AM, 21 MAY 07

Scope:

Rev: 580004 User: KW-0606725, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

General Timber Beam

Page 2 headers.ecw:Calculations

Description

Header at hatch

ress Calcs								
Bending A	CMS - Tributor resistan	rijaowejy 35.		elenot kasteris en s				
Ck Cf	30.585 1.000	Le Rb	7.207 ft 4.632	Sxx Cl	51.563 in3 0.998	Area	41.250 in2	
@ Cent @ Left \$ @ Right			Max Moment 2.26 k-ft 0.00 k-ft 0.00 k-ft		<u>Sxx Req'd</u> 24.16 in3 0.00 in3 0.00 in3	<u>Al</u>	lowable fb 1,123.00 psi 1,125.00 psi 1,125.00 psi	
Shear Ana Design S Area Red Fv: Allow	hear quired		@ Left Support 1.99 k 17.693 in2 112.50 psi	(@ Right Support 1.99 k 17.693 in2 112.50 psi			
Max. Lef	Supports Reaction ht Reaction		1.41 k 1.41 k		Bearing Length Req'd Bearing Length Req'd		0.410 in 0.410 in	
uery Value	S							
M, V, &	D @ Specif	fied Lo	ocations		Moment		Shear	Deflection
@ Rig	nter Span Lo ht Cant. Loc t Cant. Loca	cation =			0.00 k-ft 0.00 k-ft 0.00 k-ft		1.41 k 0.00 k 0.00 k	0.0000 in 0.0000 in 0.0000 in

Doi	าุลได
	1/2
	oberts
	1

PROJECT: _	Panda	Express	JOB NO
		- 1	

SUBJECT: 2X Framing DATE ____

At 3rd. joist from south:

Span = 5'-0"

trib. width = 32"

DL = 20 psf (2.667') = 54 ptf

LL = 30 psf (2.667') = 80 psf

· Paralle) snow drift: 14.8 psf

$$\frac{39.1}{8.74} = \frac{y}{3.32}$$
 $y = 14.8 \text{ psf}$

- · Tapered snow drift: 29.1 psf to 14.8 psf from 0 to 5'
 - design analysis. Ref. enercaic software output for

Title : Dsgnr: Description :

Job#

Date: 11:52AM, 21 MAY 07

Scope:

Rev: 580004 User: KW-0606725, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

General Timber Beam

Page 1 headers.ecw:Calculations

Descri	ption	2X Fra	ming							
enera	l Informatio	n	(Code Ref: 1997	7/2001 NDS	2000/2	003 IBC, 200	3 NFPA 500	0. Base allo	owables are user def
Be Be Me	ection Name eam Width eam Depth ember Type ad Dur. Factor	2x6	1.500 in 5.500 in Sawn 1.250	Lei Rig Do Fb	nter Span ft Cantilever ght Cantileve uglas Fir - L Base Allow Allow		5.00 ft ft ft 0.2 900.0 ps 90.0 ps	Lu Lu		5.00 ft 0.00 ft 0.00 ft
Ве	am End Fixity		Pin-Pin	Fc E	Allow		1,350.0 ps 1,600.0 ks			
ull Ler	ngth Unifor	m Loa	ds			3-2-2-1-27				
Lef	nter ft Cantilever ght Cantilever		DL DL DL	54.00 #/ft #/ft #/ft	LL LL LL		80.00 #/ft #/ft #/ft			
rapezo	oidal Loads	CT 10 CT			raenojos azertas.	88.00 m		ABOVERNO CONTRACTOR	Medicine and providing the se	ata anagan ng Walay Yawan, ganaganan, s
#1	DL @ Left DL @ Right	•	#/ft #/ft	LL @ Let LL @ Rig		14.80 14.80		Start Loc End Loc		00 ft 10 ft
#2	DL @ Left DL @ Right		#/ft :#/ft	LL @ Lef LL @ Rig		39.10 14.80		Start Loc End Loc		00 ft 00 ft
Sun	nmary				.,,				В	eam Design OK
1 '	•		Ith = 1.500in x [•	Ends are Pi	n-Pin				
l .	lax Stress R laximum Mo Allowabl	ment		0.632 ; 1 0.5 k-ft 0.9 k-ft		Ma	ximum She Allowable			0.6 k 0.9 k
	x. Positive Mon x. Negative Mo		0.55 k 0.00 k		2.480 ft 0.000 ft		Shear		₋eft Right	0.45 k 0.43 k
Ma	x @ Left Supp x @ Right Sup x. M allow		0.00 k 0.00 k 0.87				Camb	<u>@</u> (∟eft Center Right	0.000in 0.034in 0.000in
fb Fb	871.5 1,379.2	•	fv Fv	66.78 psi 112.50 psi	Left	ions DL nt DL	0.13 k 0.13 k	Max Max	<	0.45 k 0.43 k
eflection	ons		· · · · · · · · · · · · · · · · · · ·							
	ter Span eflection Location Length/Defl		Dead Load -0.023 in 2.500 ft 2,629.2		74 in 00 ft	Defl L	ntilever ection ength/Defl antilever	Dead	<u>Load</u> 0.000 in 0.0	<u>Total Load</u> 0.000 in 0.0
@ @	nber (using 1.) Center) Left) Right	.5 * D.L.	Defl) 0.034 in 0.000 in 0.000 in			Defl	ection ength/Defl	ı	0.000 in 0.0	0.000 in 0.0

PROJECT:	Frankla	Express
FROJECI.	1.507 (6.95)	L. X. pr 6/10

JOB NO.

oberts SUBJECT: <u>Header Design</u> DATE_

Associates, Inc.

Consulting Engineers BY: CP CK: ____

_ SHT: _____ OF _

At towers.

trib width =
$$36ft/2 = 18-0$$
" (roof)
 $14'-6$ " (wall)
 $2!-1/2$ " (roof)

11 - 30-1 psf

$$W_{DL} = 25(18 + 2.125) + 15(14.5) = 721$$
 pH

Ref. enercalc software output for design analysis.

At back tower.

trio. width =
$$14^{1}-6$$
" (wall)
 $2^{1}-1/2$ " (roof)

Span = 10'-0"

$$W_{22} = 25(2.125) + 15(14.5) = 271 \text{ pH}$$

Ref. enercalc software output for design analysis

Title: Dsgnr: Description :

Job# Date: 6:38AM, 22 MAY 07

Scope:

Rev: 580004 User: KW-0606725, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Softv

General Timber Beam

Page 1 headers.ecw:Calculations

(c)1983-2003 ENERCALC Engin	eering Soft	ware	Jene	AL LIHINGI			headers.ecw:Calculat
Description I	leader	at towers					
General Information	n	Co	ode Ref: 1997/2	2001 NDS, 200	0/2003 IBC, 2003 I	NFPA 5000. Base a	allowables are user defi
Beam Width Beam Depth Member Type Load Dur. Factor	6x10	5.500 in 9.500 in Sawn	Left Righ Doug Fb B Fv A		No.2 1,200.0 psi 85.0 psi	Lu Lu Lu	7.00 ft 0.00 ft 0.00 ft
Beam End Fixity		Pin-Pin	Fc A E	liow	825.0 psi 1,500.0 ksi		
ull Length Uniforn	n Load	s					
Center	000000000000000000000000000000000000000	在全美国的政治等的 医克克特氏	721.00 #/ft	ESTERAÇÃO DE POSSO DE COMO LL	606.00 #/ft	erie (Niboleo) seed on objekt of beed	
Left Cantilever Right Cantilever	[DL DL	#/ft #/ft	LL LL	#/ft #/ft		
Summary							Beam Design OK
Span= 7.00ft, Be Max Stress R		h = 5.500in x D	epth = 9.5in, E 0.974 :1	nds are Pin-Pin			
Maximum Mo	ment		8.1 k-ft 10.3 k-ft	ř	Maximum Shea Allowable	ır * 1.5	5.4 k 5.6 k
Max. Positive Mon	nent	8.13 k- 0.00 k-		3.500 ft 0.000 ft	Shear:	@ Left @ Right	4.64 k
Max @ Left Suppo Max @ Right Supp		0.00 k- 0.00 k-			Camber	: @ Left @ Center @ Right	0.000 in 2000 0.099 in 2000 0.000 in
Max. M allow fb 1,178.9	•	10.27 fv	103.47 psi	Reactions Left DL	2.52 k	Max	4.64 k
Fb 1,490.1	1 psi	Fv	106.25 psi	Right DL	2.52 k	Max	4.64 k
galakulan megaban delang sebuah-aga yang	NGCHASTAR SE	e de la companya de		500 (1634)	Cantilever	Dead Load	Total Load
Center Span Deflection		Dead Load -0.066 in	<u>Total Loa</u> -0.12	<u> </u>	Cantilever Deflection	0.000 in	
Location		3.500 ft	3.50		Length/Defl	0.00	0.0
Length/Defl		1,271.2	690.7	•	t Cantilever		
Camber (using 1.	5 * D.L.				Deflection	0.000 in	0.000 in
@ Center		0.099 in		-	Length/Defl	0.0	0.0
@ Left		0.000 in			-		
@ Right		0.000 in					
tress Calcs	N Spinners of C		et . No 215 (12 to 20 to 1) - 10				
Bending Analysis			_				
Ck 25.64		13.710 ft	Sxx		in3 Area	52.250 in2	
Cf 1.00	0 Rb	7.189 Max Moment	CI	0.993 <u>Sxx Reg'd</u>	Alle	owable fb	
@ Center		8.13 k	-ft	65.45 in3		1,490.11 psi	
@ Left Support		0.00 k		0.00 in3		1,500.00 psi	
@ Right Support		0.00 k	-ft	0.00 in3		1,500.00 psi	
Shear Analysis		@ Left Supp	ort	@ Right Suppo	ort		
Design Shear		5.41 k		5.41 k			
Area Required Fv: Allowable		50.882 ir 106.25 p		50.882 in2 106.25 psi			
Bearing @ Support	ts						
Max. Left Reaction Max. Right Reaction	n	4.64 k 4.64 k		Bearing Len Bearing Len		1.024 in 1.024 in	
				0	- •		

Title : Dsgnr: Description : **Job # Date:** 6:38AM, 22 MAY 07

Scope:

Rev: 580004 User: KW-0606725, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

General Timber Beam

Page 2 headers.ecw:Calculations

Description

Header at towers

Query	Values
-------	---------------

			The same and the s	AND THE PART WAS ARROUNDED TO THE PART OF	Water Street
M, V, & D @ Specified Locations		Moment	Shear	Deflection	
@ Center Span Location =	0.00 ft	0.00 k-ft	4.64 k	0.0000 in	
@ Right Cant. Location =	0.00 ft	0.00 k-ft	0.00 k	0.0000 in	
@ Left Cant. Location =	0.00 ft	0.00 k-ft	0.00 k	0.0000 in	

Job # Date: 11:52AM, 21 MAY 07

Scope:

Rev: 580004 User: KW-0606725, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

General Timber Beam

Page 2 headers.ecw:Calculations

Description

2X Framing

tress Calc	:s						· · · · · · · · · · · · · · · · · · ·		
Bending	Analysis	esta de la composição d		oka dinaka			ga ng galikan samang tali masa sa t	VAROTE SERVICE SERVICE SERVICES	
Ck Cf	30.585 1.300	Le Rb	9.471 ft 16.671	Sxx Cl	7.563 in3 0.943	Area	8.250 in2		
			Max Moment		Sxx Reg'd	All	owable fb		
_	iter Support nt Support		0.55 k-ft 0.00 k-ft 0.00 k-ft		4.78 in3 0.00 in3 0.00 in3		1,379.23 psi 1,462.50 psi 1,462.50 psi		
Shear An Design Area Re Fv: Allo	Shear equired		@ Left Support 0.55 k 4.897 in2 112.50 psi	(@ Right Support 0.54 k 4.757 in2 112.50 psi		,		
Max. Le	© Supports If Reaction ght Reaction		0.45 k 0.43 k		Bearing Length Req's		0.222 in 0.212 in		
uery Value	es								
M. V. 8	& D @ Speci	fied Lo	ocations	Capa de la composición dela composición de la co	Moment		Shear	Deflection	icasyora:
@ Ce @ Ri	enter Span Log ght Cant. Log eft Cant. Loca	ocation cation =	= 0.00 ft		0.00 k-ft 0.00 k-ft 0.00 k-ft		0.45 k 0.00 k 0.00 k	0.0000 in 0.0000 in 0.0000 in	

Job # Date: 1:31PM, 21 MAY 07

Scope:

Rev: 580004 User: KW-0606725, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

General Timber Beam

Page 1 headers.ecw:Calculations

Description

Header at back tower

neral Information	Code	Ref: 1997/2001 NDS, 2000	/2003 IBC, 2003 NFPA 5000. E	Base allowables are user define
Section Name 6x10		Center Span	10.00 ft Lu	10.00 ft
Beam Width	5.500 in	Left Cantilever	ftLu	0.00 ft
Beam Depth	9.500 in	Right Cantilever	ftLu	0.00 ft
Member Type	Sawn	Douglas Fir - Larch, i	No.2	
		Fb Base Allow	1,200.0 psi	
Load Dur. Factor	1.250	Fv Allow	85.0 psi	
Beam End Fixity	Pin-Pin	Fc Allow	825.0 psi	
		E	1,500.0 ksi	

		Loads

Center	DL	271.00 #/ft	LL	165.00 #/ft
Left Cantilever	DL	#/ft	LL	#/ft
Right Cantilever	DL	#/ft	LL	#/ft

Summary				-		Beam Design OK	
Span= 10.00ft, Bea	m Width = 5.500in :	x Depth = 9.	5in, Ends are Pin-Pi	n			
Max Stress Rat	io	0.532 : 1	•				
Maximum Mom	ent	5.4 k-f	t N	/laximum Shear *	1.5	2.8 k	
Allowable	JOIN CONTRACTOR OF THE PROPERTY OF THE PROPERT	10.2 k-f	t	Allowable		5.6 k3,	
Max. Positive Mome		5k-ft a		Shear:	@ Left	2.18 k	
Max. Negative Mom	ent 0.00)k-ft a	t 0.000 ft		@ Right	2.18 k	
Max @ Left Support	0.00	k-ft		Camber:	@ Left	0.000 in	
Max @ Right Suppo	rt 0.00	k-ft			@ Center	0.155 in	
Max. M allow	10.24		Reactions.	••	@ Right	0.000 in	
fb 790.53	osi fv	53.07 p	si Left DL	1.35 k	Max	2.18k	
Fb 1,486.02	osi Fv	106.25 p	osi Right DL	1.35 k	Max	2.18 k	

Deflections					TO SECURE ON A CONSTRUCTION OF THE AND THE SECURE
Center Span	Dead Load	Total Load	Left Cantilever	Dead Load	Total Load
Deflection	-0.103 in	-0.166 in	Deflection	0.000 in	0.000 in
Location	5.000 ft	5.000 ft	Length/Defl	0.0	0.0
Length/Defl	1,160.1	721.05	Right Cantilever		
Camber (using 1.5 * I	D.L. Defl)		Deflection	0.000 in	0.000 in
@ Center	0.155 in		Length/Defl	0.0	0.0
@ Left	0.000 in		_		
@ Right	0.000 in				

Stress Calcs

Bending A	Analysis						
Ck	25.646	Le	18.568 ft	Sxx	82.729 in3	Area	52.250 in2
Cf	1.000	Rb	8.367	Cl	0.991		
			Max Moment		Sxx Reg'd	<u>A</u>	llowable fb
@ Cent	er		5.45 k-ft		44.01 in3		1,486.02 psi
@ Left	Support		0.00 k-ft		0.00 in3		1,500.00 psi
@ Righ	t Support		0.00 k-ft		0.00 in3		1,500.00 psi
Shear Ana	alysis		@ Left Support	@	Right Support		
Design S	Shear		2.77 k		2.77 k		
Area Re	quired		26.098 in2		26.098 in2		
Fv: Allov	vable		106.25 psi		106.25 psi		
Bearing @	Supports						
Max. Let	ft Reaction		2.18 k		Bearing Length Req	'd	0.480 in
Max. Rig	ht Reaction		2.18 k		Bearing Length Req	'd	0.480 in

Job#

Date: 1:31PM, 21 MAY 07

Scope:

Rev: 580004 User: KW-0606725, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

General Timber Beam

Page 2 headers.ecw:Calculations

Description

Header at back tower

Query Values					
M, V, & D @ Specified Locations		Moment	Shear	Deflection	
@ Center Span Location =	0.00 ft	0.00 k-ft	2.18 k	0.0000 in	
@ Right Cant. Location =	0.00 ft	0.00 k-ft	0.00 k	0.0000 in	
@ Left Cant. Location =	0.00 ft	0.00 k-ft	0.00 k	0.0000 in	

Ronald	
Obert	:S

PROJECT: ______ JOB NO. ______

SUBJECT: Giviam Boams DATE _____

Associates, Inc.

Consulting Engineers BY: CP CK: SHT: OF ____

At right elev.

Span = 12'-6"

DL = 20 pif + 5 pif = 25 pif

LL = 30.1 psf

 $W_{DL} = 25(18) + 15(14.5) = 667.5$ plf

Wdrift = 47,5 psf (18') = 855 plf

14-6" (wall)

trib. width = 18'-0" (roof)

WLL = 30.1 (18) = 542 PIF

Ref. enercalc software output for design analysis.

Left elev.

Span = 10'-0"

DL = 20 psf + 5 psf = 25 prf

trib. width = 18'-0" (roof)

14-5" (wall)

LL = 30.1 psf

 $W_{DL} = 25(18) + 15(14.5) = 667.5 PJF$

Wanft = 47.5 psf (18') = 855 plf

Wu = 30.1(18) = 542 plf

Ref. enercalc software output for design analysis.

Job # Date: 6:39AM, 22 MAY 07

Scope:

Rev: 580004 User: KW-0606725, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

@ Center

Shear Analysis Design Shear Area Required

Fv: Allowable

Bearing @ Supports Max. Left Reaction

Max. Right Reaction

@ Left Support

@ Right Support

40.32 k-ft

0.00 k-ft

0.00 k-ft

@ Left Support

15.48 k

51.612 in2

300.00 psi

12.90 k

12.90 k

General Timber Beam

Page 1 headers.ecw:Calculations

Description 1	leaders	at right elev.				and were proportionally state on the		
General Informatio	n	Cod	de Ref: 1997/	/2001 NDS, 2	2000/2003 IE	3C, 2003 N	IFPA 5000. Base a	allowables are user defined
Section Name Beam Width Beam Depth Member Type Load Dur. Factor Beam End Fixity	5.125x15	5.125 in 15.000 in GluLam 1.250 Pin-Pin	Left Righ Dou Fb E Fv <i>F</i>	iter Span Cantilever nt Cantilever glas Fir, 24F Base Allow Allow	- V8 2,4	ft .	Lu Lu Lu	12.50 ft 0.00 ft 0.00 ft
Full Length Uniform	n Loads			rije sa ne disangans	ente atrada de la contra	85 90 DOS 25, 146 10 ac		
Center Left Cantilever Right Cantilever	D		67.50 #/ft #/ft #/ft	LL LL LL	1,397.0	00 #/ft #/ft #/ft		
Summary								Beam Design OK
Span= 12.50ft, B Max Stress R Maximum Mo Allowable Max. Positive Mon Max. Negative Mo Max @ Left Suppo Max @ Right Supp	atio ment e nent ment ort		0.875 : 1 40.3 k-ft 46.1 k-ft at at	Ends are Pir 6.250 ft 12.500 ft	Maximu	m Shear wable Shear: Camber:	@ Left @ Right	15.5 k 23.1 k 12.90 k 12.90 k 0.000 in 0.224 in
Max. M allow	5011	46.10		Reaction	ons		@ Right	0.000 in
fb 2,517.6 Fb 2,878.7		fv Fv	201.41 psi 300.00 psi	Left [Right		.17 k 4.17 k	Max Max	12.90 k 12.90 k
Deflections	100277-10-201-11-11-1		meanwaterati daga			nyanyana manasar		No. A feet to a series of the
Center Span DeflectionLocationLength/Defl	<u> </u>	Dead Load -0.150 in 6.250 ft 1,002.5	<u>Total Lo:</u> -0.46 6.25 324.1	33 in 50 ft	eft Cantileve Deflection Length ight Cantile	/Defl	<u>Dead Load</u> 0.000 in 0.0	<u>Total Load</u> 0.000 in 0.0
Camber (using 1. @ Center @ Left @ Right	5 * D.L. D	0.224 in 0.000 in 0.000 in		•	Deflection Length	i	0.000 in 0.0	0.000 in 0.0
Stress Calcs	vykranjaka, grije					ettigelegia i della espera		
Bending Analysis Ck 19.30 Cf 1.00		23.990 ft 12.825 <u>Max Moment</u>	Sxx Cl	192.1 0.9 <u>Sxx Req'</u>			76.875 in2	

168.09 in3

0.00 in3

0.00 in3

@ Right Support

15.48 k

51.612 in2

300.00 psi

Bearing Length Req'd

Bearing Length Req'd

2,878.70 psi

3,000.00 psi

3,000.00 psi

3.873 in

3.873 in

Job # Date: 6:39AM, 22 MAY 07

Scope:

Rev: 580004 User: KW-0606725, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

General Timber Beam

Page 2 headers.ecw:Calculations

Description

Headers at right elev.

Query Values					
M, V, & D @ Specified Locations		Moment	Shear	Deflection	
@ Center Span Location =	0.00 ft	0.00 k-ft	12.90 k	0.0000 in	
@ Right Cant. Location =	0.00 ft	0.00 k-ft	0.00 k	0.0000 in	
@ Left Cant Location =	0.00 ft	0.00 k-ft	0.00 k	0.0000 in	

Job# Date: 6:40AM, 22 MAY 07

Scope:

Rev: 580004 User: KW-0606725, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

General Timber Beam

Page 1 headers.ecw:Calculations

Description

Headers at left elev.

General Informatio	n	Code Ref: 1997	/2001 NDS, 20	000/2003 IBC, 2003	NFPA 5000.	Base allowables are	user defined
Section Name Beam Width Beam Depth Member Type	5.125x12 5.125 12.000 Glul	in Lef in Rig Lam Doi	nter Span t Cantilever ht Cantilever uglas Fir, 24F Base Allow	ft · V8 2,400.0 psi	Lu Lu	10.00 ft 0.00 ft 0.00 ft	
Load Dur. Factor Beam End Fixity	1.250 Pin-Pi		Allow Allow	240.0 psi 650.0 psi 1,700.0 ksi			
Full Length Uniform	n Loads				enting in the consequence		SERVICE CONTRACTOR OF SERVICES
Center Left Cantilever Right Cantilever	DL DL DL	667.50 #/ft #/ft #/ft	L.L. L.L. L.L.	1,397.00 #/ft #/ft #/ft			

Summary						Beam Design OK
	• • _				•	_
Span= 10.00ft, Beam Width	$n = 5.125 in \times Do$	epth = 12.in,	Ends are Pin-Pin			
Max Stress Ratio	().857 : 1				40.4.1
Maximum Moment Allowable		25.8 k-ft 30.1 k-ft	Ма	ximum Shear * Allowable	1.5	12.4 k
Max. Positive Moment Max. Negative Moment	25.81 k-ft 0.00 k-ft		5.000 ft 0.000 ft	Shear:	@ Left @ Right	10.32 k 10.32 k
Max @ Left Support Max @ Right Support	0.00 k-ft 0.00 k-ft		i	Camber:	@ Left @ Center	0.000 in 0.180 in 0.000 in
Max. M allow	30.11		Reactions		@ Right	0.000
fb 2,517.68 psi	fv	201.41 psi	Left DL	3.34 k	Max	10.32 k
Fb 2,937.45 psi	Fv	300.00 psi	Right DL	3.34 k	Max	10.32 k

Center Span	Dead Load	Total Load	Left Cantilever	Dead Load	Total Load
Deflection	-0.120 in	-0.370 in	Deflection	0.000 in	0.000 in
Location	5.000 ft	5.000 ft	Length/Defl	0.0	0.0
Length/Defl	1,002.5	324.12	Right Cantilever		
Camber (using 1.5 * [D.L. Defl)		Deflection	0.000 in	0.000 in
@ Center	0.180 in		Length/Defl	0.0	0.0
@ Left	0.000 in				
@ Right	0.000 in				
ess Calcs					

000 00.00				and Corporation of the	Ment Book and Carlos Mark 1985 St. St. Comment	- 10 10 V 6 No. 32355 7 1,000	elegi este a vijekt kija at ku matakale.
Bending A	nalysis	CONTRACTOR AND SECTION AND ADDRESS.	AND STREET			_	
Ck	19.306	Le	19.192 ft 10.260	Sxx Cl	123.000 in3 0.979	Area	61.500 in2
Cf	1.000	Rb	Max Moment	Ci	Sxx Reg'd	All	owable fb
@ Cente	er		25.81 k-ft		105.42 in3		2,937.45 psi
@ Left S			0.00 k-ft		0.00 in3		3,000.00 psi
@ Right	Support		0.00 k-ft		0.00 in3		3,000.00 psi
Shear Ana	lysis		@ Left Support	(Right Support		
Design S			12.39 k		12.39 k		
Area Rec			41.290 in2		41.290 in2		
Fv: Allow			300.00 psi		300.00 psi		
Bearing @			40.22 k		Bearing Length Reg	'd	3.099 in
	: Reaction ht Reaction		10.32 k 10.32 k		Bearing Length Req		3.099 in
iviax. Rig	iii i veaciioii		10.02 K		Dodg Longar red	_	

Job # Date: 6:40AM, 22 MAY 07

Scope:

Rev: 580004 User: KW-0606725, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

General Timber Beam

Page 2 headers.ecw:Calculations

Description

Headers at left elev.

Query Values					
M, V, & D @ Specified Locations		Moment	Shear	Deflection	
@ Center Span Location =	0.00 ft	0.00 k-ft	10.32 k	0.0000 in	
@ Right Cant. Location =	0.00 ft	0.00 k-ft	0.00 k	0.0000 in	
@ Left Cant. Location =	0.00 ft	0.00 k-ft	0.00 k	0.0000 in	

onald	PROJECT:		Panda Exi	press	JOB NO	
Ronald oberts	SUBJECT:		Footing	design	DATE	
1/				•		
Associates, Inc.	BY:	CP	CK:		SHT:	OF

Footing #1.

Reaction from g1. bm. = 12.90 k

Roof = (50 psf)(184)(1.334) = 1200 lbs = 1.2 k

 $P_{total} = 12.9k + 1.2k = 14.1K$

 $\frac{14,100 \text{ lbs}}{2,900 \text{ psf}} = 4.86 \text{ ft}^2$

 $\sqrt{4.86 \text{ft}^2} = 2.2 \text{ ft}$

Use 2'-6" x 2'-6" footing.

Footing #2

Reaction from gl. bm. = 10.32 k

Ptotal = 10.32 K x 2 = 20.64 K

 $\frac{20,640 \text{ lbs}}{2,900 \text{ psf}} = 7.11 \text{ ft}^2$

 $\sqrt{7.11 \text{ H}^2} = 2.66 \text{ A}$

Use 3'-0" × 3'-0" footing

Footing #3.

Reaction from g1, bm. = 10.32k = Proval

 $10,320 \text{ lbs} = 3.55 \text{ ft}^2$ 2,900 psf

3.55 ft2 = 1.88'

Use 2'-0" x 2'-0" footing

onald	PROJECT:	Panda Express	JOB NO	
oberts		Footing design	DATE	
Associates, Inc.	ву: СР	CK:	SHT:	_ OF
Ptotal = 4.	from $6 \times 10 = 4.64$	K		

 $\sqrt{1.6 ft^2} = 1.26'$

Use $1'-6" \times 1'-6"$ footing.

Wind Load: per 2006 IBC

Wind speed: 90 mph

Exposure : C

Use Simplified Wind Load Method (ASCE 7-05): $p_s = \lambda K_{zt} I p_{sso}$

) = 1.21 (Fig. 6-2 ASCE 7-05 p40) H= 15 A

Ket = 1.0 (ASCE 7-05 section 6.5.7 p26)

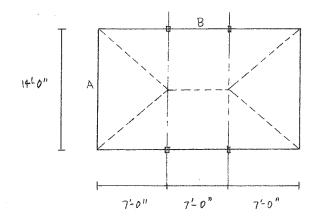
I = 1.0 (table 6-1 ASCE 7-05 p.77)

ps= 17.8 psf (Roof angle 20° fg 6-2 p38 ASCE 7-05)ps= (1.21)(1.0)(1.0)(17.8) = 21.5 psf (Horizontal)

Uplift on roof elements $Pnet = \lambda \ Kzt \ I \ Pnetzo$ $\lambda = 1.21 \ \left(Fig. 6-3 \ ASCE \ 7-05 \ p44 \right) \ H = 15ft$

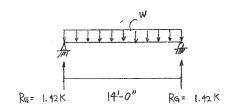
I = 1.00

Kzt = 1.0


Pnet 20 = 26.9 psf (Zone 3; Effective area = 100 sf) fig. 6-3 p42

Pnet = (1.21)(1.0)(1.0)(26.9) = 32.5 psf (Vertical gross)

Net wind load = 32.5 psf - (20/2) = 22.5 psf (Vertical) (net, components and cladding)


Donald	PROJECT:	Panda Express	JOB NO
oberts	SUBJECT:	steel tube design	DATE
Associates, Inc.	BY:	СР СК:	SHT: OF

Patio canopy plan .-

DL= 20 psf LL= 30 psf W= 21.5 psf (hor.) W= 22.5 psf (net uplift)

Beam a- gravity

trib width = 3-6"

DL=
$$20 \text{ psf}(3.5') = 70 \text{ plf}$$

LL= $30 \text{ psf}(3.5') = 105 \text{ plf}$

Job#

Date: 12:04PM, 10 MAR 08

Scope:

Rev: 580006 User: KW-0606725, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

Steel Beam Design

Page 1 headers.ecw:Calculations

Description

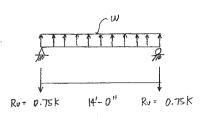
Beam A - gravity

General Informati	on			Code R	ef: AISC 9th A	SD, 1997 UBC, 20	003 IBC, 2003 NFPA 500
Steel Section Center Span Left Cant. Right Cant		14.00 ft 0.00 ft 0.00 ft		ined Ided to Loads ct Together		Ouration Factor c Modulus	46.00ksi 1.00 29,000.0ksi
Lu : Unbraced I Distributed Loads		14.00 ft				Note! Short Terr	n Loads Are WIND Loads
DL LL ST Start Location End Location	# 1 0.070 0.105	#2	#3	# 4	# 5	#6	# 7 k/ft k/ft k/ft ft ft

Summary				Beam OK
			Static Load Case	
Using: TS6X6X3/8 section, Span = End Fixity = Pinned-Pinned, Lu =		i		e e e
Moment fb : Bending Stress fb / Fb	Actual 4.960 k-ft 4.282 ksi 0.155 : 1	Allowable 31.970 k-ft 27.600 ksi	Max. Deflection Length/DL Defl Length/(DL+LL Defl)	-0.145 in 2,406.3 : 1 1.158.3 : 1
Shear fv : Shear Stress fv / Fv	1.417 k 0.315 ksi 0.017 : 1	82.800 k 18.400 ksi	20.19.11 (22 22 20.1)	

orce & Stress Su	mmary						
			<< These	columns are Dead	l + Live Load plac	ced as noted>>	
		DL	LL	LL+ST	LL	LL+ST	200
	<u>Maximum</u>	Only_	@ Center	@ Center	@ Cants	@ Cants	
Max. M +	4.96 k-ft	2.39	4.96			k-1	
Max. M -	•					. k-1	
Max. M @ Left						K-1	
Max. M @ Right						k-1	L
Shear @ Left	1.42 k	0.68	1.42			k	
Shear @ Right	1.42 k	0.68	1.42			k	
Center Defl.	-0.145 in	-0.070	-0.145	-0.145	0.000	0.000 in	
Left Cant Defl	0.000 in	0.000	0.000	0.000	0.000	0.000 in	
Right Cant Defl	0.000 in	0.000	0.000	0.000	0.000	0.000 in	
Query Defl @	0.000 ft	0.000	0.000	0.000	0.000	0.000 in	
Reaction @ Left	1.42	0.68	1.42	1.42		k	
Reaction @ Rt	1.42	0.68	1.42	1.42		k	
Fa calc'd per Eq.	E2-2, K*L/r > Cc						-

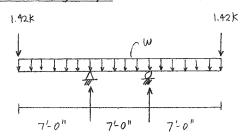
Section Properties	TS6X6X3/8			
Depth	6.000 in	Weight	27.45 #/ft	
Thickness	0.375 in	ixx	41.600 in4	
Width	6.000 in	lyy	41.600 in4	
		Sxx	13.900 in3	
Area	8.08 in2	Syy	13.900 in3	
Rt	3.000 in	R-xx	2.270 in	
Values for LRFD Design	•	R-yy	2.270 in	
J	68.500 in4	Zx	16.800 in3	
		Zy	16.800 in3	


Do	nald
	Ober
21	Kopei

PROJECT:	Panda	EXDYRUG	JOB NO.
I NOSECI.	N. 64 10. A. 2	47/61/200	

rts SUBJECT: _____Steel tube design ____ DATE _

Associates, Inc.
Consulting Engineers BY: CP CK: SHT: OF ____


Beam A - uplift

trib. width =
$$3^{2}6^{11}$$

W = 22.5 psf (net uplift)

W= 22.5 psf (3.51) = 79 psf

Beam B - gravity

DL = 20 psf (7') = 140 plf

LL = 30 psf (7') = 210 plf

Job # Date: 12:08PM, 10 MAR 08

Scope:

Rev: 580006 User: KW-0606725, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

Steel Beam Design

Page 1 headers.ecw:Calculations

Description

Beam A - uplift

Gen	eral Informati	on			Code R	ef: AISC 9th AS	SD, 1997 UBC, 20	003 IBC, 2003 NFPA 500	00
	Steel Section Center Span Left Cant. Right Cant Lu: Unbraced L		14.00 ft 0.00 ft 0.00 ft 14.00 ft	Pinned-Pin Bm Wt. Ad LL & ST Ad	ded to Loads		Puration Factor Modulus	46.00ksi 1.00 29,000.0ksi	
Dist	ributed Loads	4. V - section converts and according			Victoria VIII de Cataresco acidan VIII		Note! Short Terr	n Loads Are WIND Load	S.
	DL LL ST Start Location End Location	# 1 0.079	#2	#3	# 4	# 5	#6	# 7 k/ft k/ft k/ft ft ft	Acceptable

Summary			Short Term Load Case	Beam OK Governs Stress
Using: TS6X6X3/8 section, Span = End Fixity = Pinned-Pinned, Lu =	14.00ft, LDF = 1.000	•		
Moment fb : Bending Stress fb / Fb	Actual 2.608 k-ft 2.251 ksi 0.082 : 1	Allowable 31.970 k-ft 27.600 ksi	Max. Deflection Length/DL Defl Length/(DL+LL Defl)	-0.076 in 8,543.8 : 1 2,202.9 : 1
Shear fv : Shear Stress fv / Fv	0.745 k 0.166 ksi 0.009 : 1	82.800 k 18.400 ksi		

< These of LL @ Center	columns are Dead LL+ST <u>@ Center</u> 2.61	l + Live Load place LL <u>@ Cants</u>	ed as noted LL+ST <u>@ Cants</u>	>>
	@ Center			
	2.61			
				k-ft k-ft k-ft k-ft
	0.75 0.75			k k
0.000 0.000 0.000	-0.076 0.000 0.000	0.000 0.000 0.000	0.000 0.000 0.000	in in
0.000	0.000	0.000	0.000	in
	0.75 0.75			k k
	0.000	0.75 0.000 -0.076 0.000 0.000 0.000 0.000 0.000 0.000 0.75	0.75 0.000	0.75 0.000 -0.076 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.75

Section Properties	TS6X6X3/8	Part of This country are an experience to the area of the first of the country of		
Depth	6.000 in	Weight	27.45 #/ft	
Thickness	0.375 in	lxx	41.600 in4	
Width	6.000 in	İyy	41.600 in4	
		Sxx	13.900 in3	
Area	8.08 in2	Syy	13.900 in3	
Rt	3.000 in	R-xx	2.270 in	
Values for LRFD Design		R-yy	2.270 in	•
J	68.500 in4	Zx	16.800 in3	
		Zy	16.800 in3	

Date: 12:13PM, 10 MAR 08

Job#

Scope:

Rev: 580006 User: KW-0606725, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

Steel Beam Design

Page 1 headers.ecw:Calculations

Description

Beam B - gravity

eneral Informati	on			Code R	Ref: AISC 9th	ASD, 1997 UBC, 20	03 IBC, 2003 N	FPA 50
Steel Section	n : TS6X6	(3/8			Fy		46.00 ksi	i.
Center Span Left Cant. Right Cant Lu : Unbraced I	_ength	7.00 ft 7.00 ft 7.00 ft 7.00 ft	Bm Wt. A			d Duration Factor stic Modulus	1.00 29,000.0 ksi	
stributed Loads						Note! Short Term	Loads Are WIN	ID Loa
DL LL ST Start Location End Location	# 1 0.140 0.210	#2	#3	# 4	#5	#6	# 7 k/ft k/ft k/ft ft ft	
int Loads						Note! Short Term	Loads Are WIN	ID Loa
Dead Load Live Load Short Term Location	# 1 0.490 0.930 -7.000	# 2 0.490 0.930 14.000	#3	# 4	# 5	#6	#7 k k k ft	
Summary						Static Load (Bean Case Governs	
Using: TS6X6X3/8 End Fixity = Pinne	section, Spar ed-Pinned, Lu	= 7.00ft, LDF =	46.0ksi, Left 1.000	Cant. = 7.00ft, Rig	jht Cant. = 7	.00ft		
Moment	ng Stress	Actual 19.187 k 16.565 k		Allowable 31.970 k-ft 27.600 ksi		Max. Deflection Length/DL Defl	1.060	in : 1

82.800 k 18.400 ksi

Force	2.	Strace	Summary
FUIGE	Ot.	JUESS	Summer

fv: Shear Stress

fv / Fv

Shear

			<< These	columns are Dead	+ Live Load place	ed as noted>>
		DL	LL	LL+ST	LL '	LL+ST
	<u>Maximum</u>	Only_	@ Center	@ Center	@ Cants	@ Cants
Max. M +	19.19 k-ft					k-ft
Max. M -		-7.53	-7.53		-19.19	k-ft
Max. M @ Left		-7.53	-7.53		-19.19	k-ft
Max. M @ Right		-7.53	-7.53		-19.19	k-ft
Shear @ Left	4.03 k	1.65	1.65		4.03	k
Shear @ Right	4.03 k	1.65	1.65		4.03	k
Center Defl.	0.161 in	0.059	0.049	0.049	0.161	0.161 in
Left Cant Defl	1.036 in	-0.395	-0.360	-0.360	-1.036	-1.036 in
Right Cant Defl	1.060 in	-0.393	-0.367	-0.367	-1.060	-1.060 in
Query Defl @	0.000 ft	0.000	0.000	0.000	0.000	0.000 in
Reaction @ Left	7.05	2.25	2.98	2.98	4.65	4.65 k
Reaction @ Rt	7.05	2.25	2.98	2.98	4.65	4.65 k
Fa calc'd per Eq. E2	2-1, K*L/r < Cc					

4.030 k 0.896 ksi

0.049:1

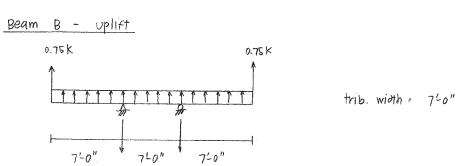
Job # Date: 12:13PM, 10 MAR 08

Scope:

Rev: 580006 User: KW-0606725, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

Steel Beam Design

Page 2 headers.ecw:Calculations


Description

Beam B - gravity

Section Properties	TS6X6X3/8			
Depth	6.000 in	Weight	27.45 #/ft	
Thickness	0.375 in	lxx	41.600 in4	
Width	6.000 in	lyy	41.600 in4	
		Sxx	13.900 in3	
Area	8.08 in2	Syy	13.900 in3	:
Rt	3.000 in	R-xx	2.270 in	
Values for LRFD Design		R-yy	2.270 in	
J	68.500 in4	Zx	16.800 in3	
		Zy	16.800 in3	

254

Ronald	PROJECT: Panda Express	_ JOB NO
oberts	SUBJECT: Steel tube design	DATE
Associates, Inc.	BY: CK:	_ SHT: OF

W = 22.5 psf (7.0') = 158 plf

Job# Date: 12:17PM, 10 MAR 08

Scope:

Rev: 580006 User: KW-0606725, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

Steel Beam Design

Page 1 headers.ecw:Calculations

0.268 in

626.9:1

5,264.0 : 1

Description

Beam B - uplift

Seneral Informat	ion			Code R	ef: AISC 9th A	SD, 1997 UBC, 20	003 IBC, 2003 NFPA 50		
Left Cant. 7.00 Right Cant 7.00		Center Span 7.00 ft Bm Will Left Cant. 7.00 ft LL & S Right Cant 7.00 ft		Steel Section : TS6X6X3/8 Center Span 7.00 ft Bm Wt. Added to Loads Left Cant. 7.00 ft LL & ST Act Together Right Cant 7.00 ft Together		Fy Load Duration Factor Elastic Modulus		46.00ksi 1.33 29,000.0ksi	
istributed Loads						Note! Short Tern	n Loads Are WIND Load		
DL LL ST Start Location End Location	# 1 0.158	#2	#3	# 4	# 5	# 6	# 7 k/ft k/ft k/ft k/ft ft ft		
oint Loads						Note! Short Term	Loads Are WIND Load		
Dead Load Live Load Short Term Location	# 1 0.075 -7.000	# 2 0.075 14.000	#3	# 4	# 5	#6	#7 k k k t		
Summary Using: TS6X6X3/8 End Fixity = Pinne	section, Spared-Pinned, Lu	1 = 7.00ft, Fy = = 7.00ft, LDF = Actual	46.0ksi, Left (1.330	Cant. = 7.00ft, Rigi	s ht Cant. = 7.00	Short Term Load (Beam OK Case Governs Stress		

36.708 ksi

110.124 k

24.472 ksi

Max. Deflection

Length/(DL+LL Defl)

Length/DL Defl

rorce & Stress Summar	rce & Stress Sum	mar
-----------------------	------------------	-----

Shear

fb : Bending Stress fb / Fb

fv / Fv

fv: Shear Stress

	of Antibody Andrick Parking Street Street	TENNY DALENSANDANA	n 19 to me o los kontributores	TO THE POST OF THE PARTY OF THE	STATE OF THE STATE	Street and the same of the same of the same
			<< These	columns are Dead	+ Live Load place	ed as noted>>
		DL.	LL	LL+ST	LL '	LL+ST
	<u>Maximum</u>	<u>Only</u>	@ Center	@ Center	@ Cants	@ Cants
Max. M +	5.07 k-ft			0.46		k-ft
Max. M -		-0.67	-0.67	-0.67	-1.20	-5.07 k-ft
Max. M @ Left		-0.67	-0.67	-0.67	-1.20	-5.07 k-ft
Max. M @ Right		-0.67	-0.67	-0.67	-1.20	-5.07 k-ft
Shear @ Left	1.36 k	0.19	0.19	0.65	0.26	· · ·
Shear @ Right	1.36 k	0.19	0.19	0.65	0.26	1.36 k
		0	0.10	0.05	0.20	1.36 k
Center Defl.	0.043 in	0.005	0.005	-0.002	0.009	0.043 in
Left Cant Defi	0.268 in	-0.031	-0.031	-0.009	-0.062	-0.268 in
Right Cant Defl	0.266 in	-0.032	-0.032	-0.009	-0.063	-0.266 in
Query Defl @	0.000 ft	0.000	0.000	0.000	0.000	0.000 in
				0.000	0.000	0.000 [7]
Reaction @ Left	2.65	0.29	0.29	0.84	0.36	1.47 k
Reaction @ Rt	2.65	0.29	0.29	0.84	0.36	1.47 k
Fa calc'd per Eq. E2-	-1. K*L/r < Cc				0.00	1.47 K

4.376 ksi

0.119:1

1.357 k

0.302 ksi

0.012:1

Job # Date: 12:17PM, 10 MAR 08

Scope:

Rev: 580006 User: KW-0606725, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

Steel Beam Design

Page 2 headers.ecw:Calculations

Description

Beam B - uplift

Section Properties	TS6X6X3/8			
Depth	6.000 in	VVeight	27.45 #/ft	
Thickness	0.375 in	lxx	41.600 in4	
Width	6.000 in	lyy	41.600 in4	
		Sxx	13.900 in3	
Area	8.08 in2	Syy	13.900 in3	
Rt	3.000 in	R-xx	2.270 in	
Values for LRFD Design		R-yy	2.270 in	
J	68.500 in4	Zx	16.800 in3	
		Zy	16.800 in3	

Ronald Oberts
Associates Inc

PROJECT:	Panda	Express	JOB NO
----------	-------	---------	--------

SUBJECT:	steel	columns	DATE	

Consulting Engineers BY: CP CK:

_____ SHT: _____ OF

Gravity.-

W = 21.5 psf chor.)

Weight of 1/2"x 1/2" x 1/4" alum. tube = 4.32 16/61 [(14x2) + (21x2)] = 203 lbs

fabric weight = $10 \text{ psf} (294 \text{ ft}^2) = 2.940 \text{ lbs}$

 $A = (21')(14') - 294 ft^2$

weight of $tS 6 \times 6 \times 3/8" = 27.48 \text{ lb/ft (70 ft)} = 1924 \text{ lbs}$

Snow load = $30 \text{ psf} (294 \text{ ft}^2) = 8820 \text{ lbs}$

P= 13,987 lbs

lateral point loads - $W \text{ top} = \left[\frac{(3.5' \times 2.75') + (7' \times 2.75')/2}{2} \right] (21.5 \text{ psf}) = 207 \text{ lbs}$

 $W = bot = 21.5 \text{ psf } (6' \times 1.33') = 172 \text{ lbs } @ 3'-0" \text{ or } W = 21.5 \text{ psf } (1.33') = 28.5 \text{ psf}$ from o' to 6'

Job # 07173

Description:

Dsgnr:

Date: 4:27PM, 10 MAR 08

Scope:

User: KW-0606725, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

Steel Column

Page headers.ecw:Calculations

Description

Steel column

eneral Information			Code Ref: AISC 9t	h ASD, 1997 UBC, 2003 I	BC, 2003 NFPA 5000
Steel Section	HSS4X4X3/16	Fy Duration Factor	46.00 ksi 1.330	X-X Sidesway : Y-Y Sidesway :	Restrained Restrained
Column Height	7.500 ft	Elastic Modulus	29,000.00 ksi		
End Fixity	Fix-Free	X-X Unbraced	7.500 ft	Kxx	1.000
Live & Short Term Lo	ads Combined	Y-Y Unbraced	7.500 ft	Куу	1.000

Loads

Axial Load... Dead Load

5.17 k Live Load 8.82 k

Ecc. for X-X Axis Moments Ecc. for Y-Y Axis Moments k

0.000 in 0.000 in

Short Term Load Point lateral Loads...

Along Y-Y (strong axis moments) Along X-X (y moments)

LL

ST 0.207 k k

_Height 7.500 ft Ĵft.

Distributed lateral Loads...

Along Y-Y Along X-X LL

ST 0.029 k/ft k/ft

Start End 6.000 ft

Summary

Column Design OK Section: HSS4X4X3/16, Height = 7.50ft, Axial Loads: DL = 5.17, LL = 8.82, ST = 0.00k, Ecc. = 0.000in

Live

0.1585

0.1239

Unbraced Lengths: X-X = 7.50ft, Y-Y = 7.50ft

Combined Stress Ratios

AISC Formula H1 - 3

Dead AISC Formula H1 - 1 AISC Formula H1 - 2

0.0928

DL

DL

DL + LL 0.2513 0.1964 DL + ST + (LL if Chosen) 0.4298

0.3664 nou in pernana,

NSC For neigh

XX Axis: Fa calc'd per Eq. E2-1, K*L/r < Cc YY Axis: Fa calc'd per Eq. E2-1, K*L/r < Cc

Stresses

of PSTED ID TO Compare ATT (TVS) IS SECURITED BOMEN AND A CONTRACT TO A TO SECURITED ATT.	NY Zarana wa 102 wa masa wa masa kata ini mana mana mata ini ma				
Allowable & Actual Stresses	<u>Dead</u>	_Live_	_DL+LL_	DL + Short	Mijara Saraha
Fa : Allowable	21.57 ksi	21.57 ksi	21.57 ksi	28.69 ksi	
fa : Actual	2.00 ksi	3.42 ksi	5.42 ksi	5.42 ksi	
Fb:xx : Allow [F3.1]	27.60 ksi	27.60 ksi	27.60 ksi	36.71 ksi	
fb : xx Actual	0.00 ksi	0.00 ksi	0.00 ksi	8.03 ksi	
Fb:yy: Allow [F3.1]	27.60 ksi	27.60 ksi	27.60 ksi	36.71 ksi	
fb : yy Actual	0.00 ksi	0.00 ksi	0.00 ksi	0.00 ksi	

Analysis Values

F'ex : DL+LL	44,375 psi	Cm:x DL+LL			
	44,575 psi	CIII.X DLTLL	0.60	Cb:x DL+LL	1.00
F'ey : DL+LL	44,375 psi	Cm:y DL+LL	0.60	Cb:y DL+LL	1.00
F'ex : DL+LL+ST	59,019 psi	Cm:x DL+LL+ST	1.00	•	
		OHIX DETELTS!	1.00	Cb:x DL+LL+ST	1.00
F'ey : DL+LL+ST	59,019 psi	Cm:y DL+LL+ST	0.60	Cb:y DL+LL+ST	1.00
Max X-X Axis Deflection	-0.339 in at	7.500 ft Max Y-	Y Axis Deflection	0.000 in at	0.000 ft

Title: Panda Express - Riverton, UT

Dsgnr: Description:

UT Job # 07173 Date: 4:27PM, 10 MAR 08

Scope:

Rev: 580008 User: KW-0606725, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

Land the again to the

Steel Column

Page 2 headers.ecw:Calculations

Description

Steel column

Section Properties	HSS4X4X3	3/16			
Depth	4.000 in	Weight	8.76 #/f t	Values for LRFD	Design
Web Thick	0.174 in	lxx	6.210 in4	J	9.960 in4
Width	4.000 in	lyy	6.210 in4	Cw	5.07 in6
Flange Thick	0.174 in	Sxx	3.100 in3	Zx	3.670 in3
Area	2.58 in2	Syy	3.100 in3	Zy	3.670 in3
Rt	0.000 in	Rxx	1.550 in	_,	0.000
		Ryy	1.550 in		
	Section Type	= HSS-Square			

Job # 07173

Dsgnr: Description : Date: 4:32PM, 10 MAR 08

(72) A

Scope:

Rev: 580001 User: KW-0606725, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

General Footing Analysis & Design

Page 1 headers.ecw:Calculations

Description

Trellis footings

eneral Information		Code Ref: ACI 318-02, 1997 L	JBC, 2003 IBC, 2003 I	NFPA 5000
Allowable Soil Bearing	2,900.0 psf	Dimensions		
Short Term Increase	1.330	Width along X-X Axis	2.750 ft	
Seismic Zone	4	Length along Y-Y Axis	2.750 ft	
Live & Short Term Combined		Footing Thickness	12.00 in	
Live & Short Term Combined		Col Dim. Along X-X Axis	4.00 in	
fc	3,000.0 psi	Col Dim. Along Y-Y Axis	4.00 in	
Fy	60,000.0 psi	Base Pedestal Height	0.000 in	
Concrete Weight	145.00 pcf	5	3,333	
Overburden Weight	0.00 psf	Min Steel % Rebar Center To Edge Distance	0.0014 3.00 in	
ads				
Applied Vertical Load				
Dead Load	5.167 k	ecc along X-X Axis	0.000 in *	fb = M
Live Load	8.820 k	ecc along Y-Y Axis	0.000 in	<u></u>
Short Term Load	k		Sport in	, c
	Creates Rotation about Y-Y Axis	<u>Creates Rotation abo</u>	ut X-X Axis	M= fbs/
Applied Moments	(pressures @ left & right)	(pressures @ top	& hot)	₹
Dead Load	k-ft	2.080 k	-ft * in	M = 8.03 ksj (3
Live Load	k-ft	k-	-ft	12
Short Term	k-ft	k-	-ft	
	Creates Rotation about Y-Y Axis	Creates Rotation abo	ut X-X Axis	M = 2.075 k.ft
Applied Shears	(pressures @ left & right)	(pressures @ top		
Dead Load	k ,	k		
Live Load	k	k		
Short Term	k	k	Salar and	
Summary				
<i>y</i>			Footing Desig	in OK

2.75ft x 2.75ft Footing, 12.0in Thick, w/ Column Support 4.00×4.00 in x 0.0in high

Max Soil Pressure Allowable	<u>DL+LL</u> 2,594.6 2,900.0	<u>DL+LL+ST</u> 2,594.6 psf 3,857.0 psf	Max Mu Required Steel Area	Actual 2.644 k-ft	Allowable per ft 0.259 in2 per ft
"X' Ecc, of Resultant "Y' Ecc, of Resultant	0.000 in 1.655 in	0.000 in 1.655 in	Shear Stresses	<u>Vu</u> 15.898	Vn * Phi
X-X Min. Stability Ratio Y-Y Min. Stability Ratio	9.971 No Overturning	1.500 :1	2-Way	40.172	93.113 psi 186.226 psi

use #5 ba (0.31 in²) @ 9" o.ce t.& b.

2.251t x 1.464

Ea	atin	~ 1	200	ian
гοн	01E I	0	ues	Юn

Shear Forces	ACI C-1	ACI C-2	ACI C-3	Vn * Phi	
Two-Way Shear	40.17 psi	35.39 psi	8.40 psi	186.23 psi	
One-Way Shears			•		
Vu @ Left	12.47 psi	10.99 psi	2.61 psi	93.11 psi	
Vu @ Right	12.47 psi	10.99 psi	2.61 psi	93.11 psi	
Vu @ Top	15.90 psi	14.03 psi	3.42 psi	93.11 psi	
Vu @ Bottom	9.05 psi	7.95 psi	1.80 psi	93.11 psi	
Moments	ACI C-1	ACI C-2	ACI C-3	Ru / Phi	As Reg'd
Mu @ Left	2.14 k-ft	1.89 k-ft	0.45 k-ft	29.4 psi	0.26 in2 per ft
Mu @ Right	2.14 k-ft	1.89 k-ft	0.45 k-ft	29.4 psi	0.26 in2 per ft
Mu @ Top	2.64 k-ft	2.33 k-ft	0.57 k-ft	36.3 psi	0.26 in2 per ft
Mu @ Bottom	1.64 k-ft	1.45 k-ft	0.33 k-ft	22.6 psi	0.26 in2 per ft

Title: Panda Express - Riverton, UT

Dsgnr:

Job # 07173 Date: 4:32PM, 10 MAR 08

Description:

Scope:

Rev: 580001 User: KW-0606725, Ver 5.8.0, 1-Dec-2003 (c)1983-2003 ENERCALC Engineering Software

Lower Committee Francis

General Footing Analysis & Design

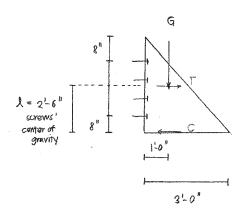
Page 2 headers.ecw:Calculations

Description

Trellis footings

oil Pressure Summary						
Service Load Soil Pressures	Left Left	Right		Гор	Bottom	
DL + LL	1,994.52	1,994.52		2.594.61	1,394.43 psf	
DL + LL + ST	1,994.52	1,994.52	2	2.594.61	1,394,43 psf	
Factored Load Soil Pressure	es				,	
ACI Eq. C-1	3,142.21	3,142.21	4	1.087.61	2,196.82 psf	
ACI Eq. C-2	2,792.33	2,792.33	3	3,632.46	1,952.20 psf	
ACI Eq. C-3	745.42	745.42		969.69	521.14 psf	
Factors (per ACI 318-02	2, applied internally to entere	d loads)				
ACI C-1 & C-2 DL	1.400 ACI C-2 Gro	oup Factor	0.750	Add"l "1.4" l	actor for Seismic	1,400
ACI C-1 & C-2 LL		ad Load Factor	0.900	Add"l "0.9" l	Factor for Seismic	0.900
ACI C-1 & C-2 ST	1.700 ACI C-3 Sh	ort Term Factor	1.300			
seismic = ST * :	1 100 Used in ACLC-2 &	C-3				

Ronald	rts


PROJECT: Panda Express _____ JOB NO.

SUBJECT: Window canopies DATE

Associates, Inc.

Consulting Engineers BY: _____CP ___CK: _____SHT: ____OF _

Gravity .-

Aluminum = 4.32 lb/ft (20ft) = 86 lbs Fabric = 10 psf (3ft x 5ft) = 150 lbs snow load = 30 psf (3 ft)(5 ft) = 450 lbs

G = 686 lbs

 $M_G = G(1.0') = 686 \text{ lbs} (1.0 \text{ ft}) = 686 \text{ ft} \cdot \text{lb}$

T = C = Mg 686 Ailb = 275 lbs 2.5 A

3/8" of lag screws length = $1"tvbe + \frac{1}{2}"sheat. + 3.5" = 5"long$

5" long lag screw \rightarrow t-E = 2-25/32" = 2.78"

no penetration factor for withdrawal pse NDS

Withdrawal allow = 305 lbs/in penetration NDS p68

actual penetration into main member (blkg) = 5" - 1" tube - 1/2" sheat = 3.5" > 2.78"

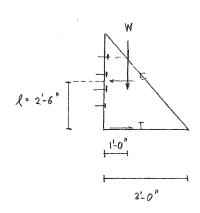
: full value can be taken

(2.78")(205 lb/in) = 848 lbs per lag screw > T - 275.lbs : o.k. /

Donald	PROJECT:	Panda	EXPYESS	JOB NO	
oberts	SUBJECT:	Window	N Canopies	DATE	
Associates, Inc.				SHT:	OF
z = shear					
Z = 686 lbs					
$Z_i = \underline{686 \mid b}$	os = 172 lbs				
P = 8D = 8	$(3/8^n) = 3^n$ to	use full	Valve		
from table	ilk NDS p94 t	= 1/4" ,	Z1 = 180 (bs		

Z' = 180 lbs (1.15) = 207 lbs > 21 - 172 lbs : o.k.

Use 4-3/8" \$ x 5" long lag screws


Ron	nald
	oberts

PROJECT:	<u>Panda</u>	EXPY855	 JOB NO.

SUBJECT:	Window	Canopies	DATE
		1110 1100	D/ (1 E

Associates, Inc.

Wind.

$$W = 22.5 \text{ psf}$$
 (net uplift)
 $W = 22.5 \text{ psf}$ (3ft x 3ft) = 203 [bs

$$T = C = Mw = 203 ft \cdot 1b = 81 lb$$

withdrawal
$$W = 305$$
 lbs/in penetration

$$2.78^{11}$$
 (305 lbs/in) = 848 lbs per lag screw $7 T = 81$ lbs : 0.k. r

shear.-

$$Z = W = 203 \, \text{lbs}$$

$$Z_1 = 203 |bs| = 51 |bs|$$

$$Z' = 180 |bs C1.6| = 288 |bs > z'_1 = 51 |bs : o.k.$$

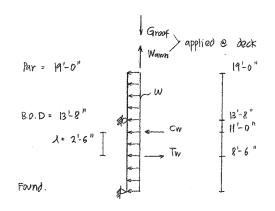
Use
$$4 - \frac{3}{8}^{n} \rho \times 5^{n}$$
 long lag screws

- C	PROJECT: Panda 5x	1
oberts	SUBJECT: Stud	check DATE
Associates, Inc.	ву: с	:: SHT: OF
Gravity:	Gnoof + Gawn (applied @ deck)	T.D. Awning = 13'-6"
Parapet H=19'	19'-0"	
8.0.D= 13'-8" J= 2'-6" A= 2'-6"	T _Q 13'-8" 11'-0" 24 8'-6"	$T_G = C_G = 275 \text{ lbs}$ $DL = 95 \text{ lbs}$; $LL = 180 \text{ lbs}$ $W = 21.5 \text{ psf} (1.33') = 28.6 \text{ psf}$ $trib.w.$ studs @ 16'o.c.
Found.	W	Groof = $(20 \text{ psf} + 30 \text{ psf} + 39.1 \text{ psf})(18 \text{ ft})(1.33 \text{ ft}) = 2138 \text{ lbs}$ Gawn = 686 lbs DL = 236 lbs; LL = 450 lbs
		Gtotal = 2824 lbs DL = 480 lbs + 236 lbs = 716 lbs
		LL= 1/70 lbs

Snow L = 938 lbs

Use 2-2x6 studs @ awnings locations

Ref. RISA software output for design analysis

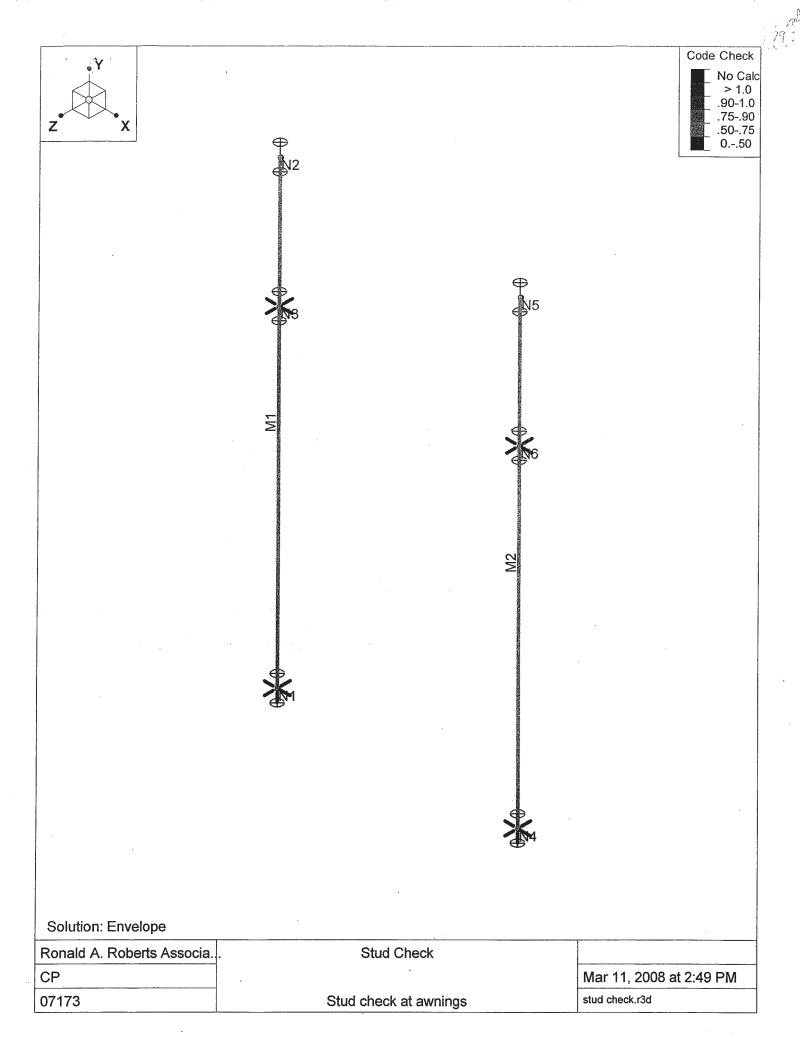

Pol	nald
	oberts

PROJECT:	Panda Expres	IOR NO
	1001001 LVIE :	JOB NO

SUBJECT:	stud	design	DATE

Associates, Inc.
Consulting Engineers

BY: _____ CK: _____ SHT: ____ OF ____



$$W = 21.5 \text{ psf}$$
 stud spacing = $16'' = \text{tnb} \text{ w}$.
 $W = 21.5 \text{ psf} (1.33') = 28.6 \text{ plf}$
 $Groof = 2138 \text{ lbs}$ (as previous calc.); DL = 420 lbs
 $LL = 720 \text{ lbs}$; SL = 938 lbs

 $W_{sen} = 22.5 \text{ psf } (3^1 \times 3^1) = 203 \text{ lbs}$

Use 2-2x6 studs @ avvnings locations

Ref. RISA software output for design analysis,

Gompany : Ronald A. Roberts Associates Designer : CP Job Number : 07173

Stud Check

Mar 11, 2008 2:52 PM Checked By:_

Member Primary Data

	Label	I Joint	J Joint	K Joint	Rotate(deg)	Section/Shape	Type	Design L	. Material	Design Rules
1	M1	N1	N2			2-2X6	Column	None	DF Larch	Typical
2	M2	N4	N5			2-2X6	Column	None	DF Larch	Typical

Wood Design Parameters

	Label	Shape	Length[ft]	le2[ft]	le1[ft]	le-bend to	le-bend bo	. Kyy	Kzz	СН	Cr	y sway	z swav
1	M1	2-2X6	19	0	Segment						Yes		
2	M2	2-2X6	19	0	Seament						Yes		

Joint Coordinates and Temperatures

	Label	X [ft]	Y [ft]	Z [ft]	Temp [F]	Detach From Diap
11	N1	0	Ö	0	Ö	
2	- N2	0	19	0	0	
3	N3	0	13.67	0	0	
4	N4	10	0	0 20	0	
5	N5	10	19	0	0	
6	N6	10	13.67	0	0	

Joint Boundary Conditions

	Joint Label	X [k/in]	Y [k/in]	Z [k/in]	X Rot.[k-ft/rad]	Y Rot.[k-ft/rad]	Z Rot.[k-ft/rad]	Footing
1	N1	Reaction	Reaction	Reaction		Reaction		
2	N2					Reaction		
3	N3	Reaction		Reaction		Reaction		
4	N4	Reaction	Reaction	Reaction		Reaction		
5	N5					Reaction		
6	N6	Reaction		Reaction		Reaction		ing Contract

Basic Load Cases

	BLC Description	Category	X Gravity	Y Gravity	Z Gravity	Joint	Point	Distributed	Area (Me	Surface (
1	DL	DL		j			4			
2	allb:	LL.					4			
3	Snow	SL					2			
4	Wind	WL					3	2		

Load Combinations

	Description	Solve	PD	SR	BLC	Factor														
1	DL + LL + SL	Yes			1	1	2	1	3	1										
2	DL+1.8WL	Yes				1	- 4	18												
3	DL + 1.3WL	Yes			1	1	4	1.3	2	1	3	1								
4	DL+LL+S	Yes			1	1.5	2	1	3	1	-/4	1.3								
5	.9DL	Yes			1	.9														

Member Point Loads (BLC 1 : DL)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M1	Υ	716	13.67
2	M/I	X	**************************************	11
3	M1	X	095	8.5
4	<u>M2</u>	Y	-48	13.67

Company : Ronald A. Roberts Associates Designer : CP Job Number : 07173

Stud Check

Mar 11, 2008 2:52 PM Checked By:_

Member Point Loads (BLC 2 : LL)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1_	M1	Y	-1,17	13.67
2	M1	X	18	701
3	M1	Х	18	8.5
-4	M2	Υ	=.72	13.67

Member Point Loads (BLC 3 : Snow)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M1	Υ	938	13.67
2	M2	Y	-938	18.67

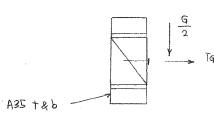
Member Point Loads (BLC 4: Wind)

	Member Label	Direction	Magnitude[k,k-ft]	Location[ft,%]
1	M2	Υ	.203	13.67
2	<u>M2</u>	X	081	11
3	M2	Χ	.081	8.5

Member Distributed Loads (BLC 4 : Wind)

:	Member Label	Direction	Start Magnitude[k/ft,d	End Magnitude[k/ft,d	Start Location[ft,%]	End Location[ft,%]
1	M1	Χ	.029	.029	0	0
2	M2	Χ	029	020	η	Ď.

ROJECT.	Panda	Ext	DY OCC
NOSECT.	13/11/17/93	5-50	11 (23)


Misc.

Associates, Inc.
Consulting Engineers

BY: _____ CK:

_____ SHT: _____ OF

Blocking .-

Gawning = 686 lbs

$$\frac{G}{2}$$
 = 343 lbs < 450 lbs : ν

$$\frac{G}{2}$$
 = 343 lbs < 450 lbs : $\sqrt{\frac{W}{2}}$ = 102 lbs < 450 lbs : ok $\sqrt{\frac{W}{2}}$

Use A35 olip tope bot of blkg.

Uplift clip for trusses -

2

$$V = 24.3 \text{ plf } (36 \text{ ft}) = 438 \text{ lbs}$$

St George City Plan Correction List

2006 International Building Code Plan Review	2nd Review
Date 3/20/06	
Business Name	Panda Express
Building Address	3650 West 13400 South
Type of Const.	8 ×
Building Area	2,475 square feet
Total Area	2,475 square feet
Number of stories	One
Height	26 feet 4 inches
inklered	Yes
	A-2
ad	95
Parking stalls	45
Accessible stalls	2
Separation	None
Use	Restaurant
Type of work	Build new restaurant
Owner	
Architect	CMA 817-635-5696 fax 817-635-5699
Engineer	Ronald Roberts Associates 214-637-
	214-637-6997 rara.net

The following items were found to be in violation of codes, unclear, missing from plans or When all corrections have been made, the plans will be approved and the plan correction list will be attached to the approved plans and become part of the approved construction response letter indicating where on plans and what type of corrective action was taken. need further explanation. Please make corrections on plans and prepare a plan review documents.

214-637-6299 fax

Please review items noted " Not corrected " which need further clarification or I could not locate corrective action on plans

Resubmit

Jody Hilton

- 3. Provide the slope of the ramp and the slope of the side flares for each flared side curb ramp as shown on the site plan Not corrected clarify slope center portion of curb ramps C4.10 states 1-12 and detail B on page C3.90 states 2 %. Which is correct?
- 4. Provide one van accessible parking stall { 11 foot) 132 inches in width with a 60 inch access aisle 2003 ANSI 117 section 502.2 Site plan detail is different than curb ramp detail on 04-A-03 Not corrected stall and access aisle area fine and allowable but curb ramp on site plan is still different that curb ramp detail ?
- Provide appropriate van accessible parking sign and accessible parking sign with postsCorrected
- 6. Provide a level landing with a 2 % slope maximum on the exterior side of all exterior doors shown on the site plan. **Corrcted**

Building Plan Review

- 7. Provide soils report Correted
- 8. Provide engineer stamped structural calculations Corrected but ground snow load and calculations must reflect a 43 lb ground snow load.
- 9. Provide engineers stamped plans and calculations for trellis and sun shade including footings, foundation structural frame and connection for trellis and sun shade structure. Please include structural frame and attachment for all window canopies **Corrected**
- 10. Construction documents must show the use and occupant load for each room or space within the building and total occupant load for this building . 2006 IBC106.1.2 **Corrected**
- 11. Provide approval of restaurant by SL County Health Department in process
- 12. Provide approval for the location, design, capacity and size of grease trap and sampling manhole by local sewer district or sewer department **Provide approval from Norris**Palmer South Valley Waster Treatment
- 13. List any or all back flow prevention device and submit to Riverton Water Department for records, inspection and approvals Double check valves area no longer allowed for lawn sprinkler systems .Corrected
- 14. Provide complete and accurate 2006 IECC Com Check Include building envelope, building heat, building service water and lighting loads **Corrected**
- 15. Show all tempered or safety glass locations Corrected

- 16. Show door threshold height and detail at all exterior exit discharge doors Corrected
- 17. Show panic hardware on both pair of exit doors serving dining area Corrected
- 18. Show floor transitions at different floor covering intersection between dining area and restrooms if any. **Corrected**
- 19. Provide a self closer on accessible water closet compartment doors and provide a pull, a handle or grasping device on both sides of the water closet compartment door. 2003 ANSI 117 section 604.8.3 **Corrected**
- 20. Provide vertical grab bar in addition to side grab bar at all accessible water closets. **Corrected**
- 21. Provide toilet paper dispenser between 7 inches to 9 inches in front of accessible toilets **Corrected**
- 22. Provide accessible customer counter at bar and at reception counter by main exit door **Corrected**
- 23. Verify that no ceiling or permanent projection, no hanging, suspended or projecting light fixture, decoration, device or object etc is below 80 inches in any circulation path or area subject to human impact. This applies to wall mounted devices or fixtures that project greater than 4 inches from the wall 2003 ANSI 117 304 Very compliance at all suspended ceiling areas **Correction**
- 24. Provide type of weather barrier to be installed behind all exterior wall coverings Corrected
- 25. Justify single scupper size which must function as both roof drain and overflow drain. Opening size is not clear and must be sized as to prevent plugging or blockage from debris.. Provide section and detail through scupper **Corrected**
- 26. Provide or show a 42 inch high parapet wall 60 inch beyond each side of roof scuttle and any roof top equipment less than 10 feet from the roof edge or move to 10 feet away from roof edge **Corrected**
- 27. All roof top equipment must be anchored to the roof structure to resist seismic, wind and gravity forces including snow and drift forces. Floating or sleepers are not permitted.

 Provide detail of roof top unit curb connection to roof structure not roof deck. See 2003 IBC 1621 and ASCE 7 for seismic bracing and attachment for equipment **Corrected**
- 28. Provide Current ICC Evaluation report for EIFS or one coat stucco system to be installed. If system is to be adhesively applied special inspection is required and must be listed with all other required special inspections Corrected Special inspection is required as per report

- 29. Show EIFS terminations at all dissimilar locations and at horizontal terminations and show how water will escape. **corrected**
- 30. Provide flashing and termination detail at EIFS intersection with cultured stone wainscoat ½ wall & brick veneer or stone **Corrected**
- 31. Provide specific approval and installation detail for any stucco or EIFS installed in a horizontal application **corrected**
- 32. Provide ICC Evaluation Report for cultured stone veneer and show manufactures attachment means. Provide flashing between EIFS and cultured stone at all locations.

 Not corrected Non ICC approved products as not acceptable. Testing, installation details and procedures must be approved by ICC Evaluation Service. Only cultured stone with an ICC Report will be acceptable
- 33. Provide engineer stamped plans specification calculations and design for all window canopy structures and their attachment to the building. Awnings must resist snow, gravity and wind loads. **Corrected & deferred submittal**
- 34. Provide manufactures installation, flashing and caulking details for exterior storefronts and windows. **Corrected**
- 35. All signage to be approved by Riverton Planning Department Corrected
- 36. Provide brick veneer attachment details and show foundation metal base flashing and weep holes **Corrected No brick**
- 37. Provide unprotected wood stud with redwood or treated sill plates 8 inches above surrounding grade as per IBC **Corrected**
- 38. Provide a minimum of 30 inches below frost for footings. Corrected
- 39. Provide complete seismic bracing details for suspended ceilings Corrected
- 40. Provide UL listing for a Class C roof covering assembly and product name & approvals for membrane roofing and 3 inch rigid foam plastic roofing insulation which must be tested together as a Class C roof covering assembly **Corrected**
- 41. List all cooking equipment and show under Type I hoods or justify the lack thereof.

 Corrected
- 42. Provide information on UL listed grease hoods, grease filters, exhaust fans etc.. Corrected
- 43. Provide and justify opening size for combustion air openings for gas fired water heater.

 Not corrected 2006 IFGC requires 50 cubic feet per 1,000 btus standard method for required volume of area Please include all gas fires pieces of equipment in the same room or provide

- 44. Provide 2 seismic straps for water heaters Corrected
- 45. Show actual walls and construction types that surround kitchen hoods and grease ducts provide 18 inch clearance if combustible construction **Corrected Metal studs**.
- 46. Show wall types hoods will be attached to and show required clearance or required protective metal surface material and its required 18 inch installation behind hood and 18 beyond all sides top and bottom. Not corrected or shown on this plans Plans appear to be for current UMC which is different than 2006 IMC
- 47. Provide actual detail of ceiling in relationship to kitchen hoods and protect hood as if a grease duct if hood penetrates ceiling **Corrected**
- 48. Provide capture and containment test, performance test for all type I grease hoods and new grease duct leak test (before duct wrap or concealment within shaft) 2006 IMC 506.3.3.1 **Corrected**
- 49. Provide for all grease duct roof top exhaust fans a hinged joint one side and a flexible conduit electrical connection for opening to allow for cleaning and inspection purposes 2006 IMC **Corrected**
- 50. Type 1 grease hood that is installed or above or concealed or penetrates a ceiling must be protected as if a concealed grease duct. Provide duct wrap and attachment details for all portions of all grease hoods installed above the ceiling line 2006 IMC sections 507.10 & 506.3.10 **Corrected**
- 51. Provide complete gas line schematic showing gas pressure design and the longest gas line run and total CFH **Corrected**
- 52. Duct wrap on all grease ducts or one hour fire rated shaft must continue to a point 18 inches above roof line or from any combustible material or construction. Such as roof insulation, roof membrane, insulation etc. **Corrected**
- 53. Provide ICC Evaluation report grease duct wrap include installation details **Corrected**
- 54. 2006 IMC 507.2.1 Provide interlock , device or means that will automatically operate grease hood exhaust fan and make up air fan upon activation of cooking equipment **Corrected**
- 55. Provide interlock between make up air unit and grease hood exhaust fan showing simultaneous operation Provide interlock means or method **Corrected**
- 56. Will make up air unit provide tempered air within 10 degrees of kitchen room temperature?

 Corrected

- 57. Provide or verify that emergency powered or battery back up exit lighting has been provided on the exterior side of the building adjacent exterior exit discharge doors at all required exit doors. IBC 1006.3 Item 5 **Corrected**
- 58. Verify or clarify on plans that emergency lighting has been provided in dining area where two exits are required IBC 2003 1006.3 Item 1 **Corrected**
- 59. Verify that horn strobe warning devices have been installed Corrected Not required
- 60. Provide the name of the approved fabricator for steel columns and brackets saddles etc..**Corrected**
- 61. Provide R ratings and U values of all insulation and windows. Show if insulation is unfaced and if faced show type and if in compliance with flame spread ratings and smoke development ratings. **Corrected**
- 62. Structural engineer to provide truss or joist connection based on given truss loading and bearing capacity **Corrected**
- 63. Engineer to list all required special inspection as per the 2006 IBC and all required or provided testing **Corrected**
- 64. Special inspection agency to be approved by building official. Corrected
- 65. Romex wiring is not allowed above suspended ceilings Corrected
- 66. Verify sediment traps have been installed ahead of all gas appliances Corrected
- 67. Provide water hammer arrestor **Corrected**
- 68. Floor drains in restrooms require trap primers Corrected

Re-submit

Jody L. Hilton ICC Certified Plans Examiner & CBO Sunrise Engineering Cell 801-557-6843 Office 801-533-0100

Carter Burgess

1420 W. Mockingbird Lane Suite 800

Dallas, TX 75247 Main: 214-920-8100 Fax: 214-688-0618

Dane Ridenour

We are sending you these items via: (FedEx Priority)

Attention:	Linda Gustaveson	Date: 3.20.2008				
	Riverton Building Department	Project No: 024246.013.500.9999				
	12830 S. 1700 West Re: Panda Express					
	Riverton, Utah 84065	Riverton, Utah				
Phone:	214.920.8100					

COPIES	DATE	DESCRIPTION			
1	3.20.2008	Comment Response Letter 3.20.08			
2	3.20.2008	Sets, Revised Construction Drawings 3.6.08			
2	3.20.2008	Structural Calculations 5.23.07, Rev 3.6.08			
1	3.20.2008	Com Check Envelop Compliance Certificate			
1	3.20.2008	Geotech (Soils Report) - Terracon, Inc. 2.21.07			
1	3.20.2008	0.2008 Lone Star Stone Mfr. Installation Specifications			
1	3.20.2008	Lone Star Stone Installation Guide			
1	3.20.2008	0.2008 CalPly - Dryvit ICC Report ESR - 1547 & Installation Details (Submittal)			
1	3.20.2008	Johns-Manville Roofing System Bur Submittal			
1	3.20.2008	Kawneer Storefront Specifications			
1	3.20.2008	Global Stainless Steel Toilet Partition Submittal			
1	3.20.2008	3M Fire Barrier Ducct Wrap - ICC Report ESR - 1255			
	For approval				
	For your use				
	For review & comment				

REMARKS: If y at 214.920.810	questions or	are in need	of any further	information	please c	contact me
Thank you,						