Este informe contiene información muy importante sobre su agua de beber. Tradúzcalo ó hable con alguien que lo entienda bien. (This report contains very important information about your drinking water. Translate it, or speak with someone who understands it.)

WATER SYSTEM INFORMATION:
This report shows our water quality and what it means. If you have any questions about this report or concerning your water utility, please contact Adam Brumbaugh, Manager at (814) 231-3021. We want you to be informed about your water supply. If you want to learn more, please attend any of our regularly scheduled meetings. They are held the first Wednesday of each month at 7:00 pm in the College Township Municipal Building, 1481 E. College Avenue, State College, PA 16801. You may confirm meeting dates by referring to www.collegetownship.org.

SOURCE(S) OF WATER:
Our water sources are: (Name-Type-Location)
1) Spring Creek Park – well – Balmoral Way, College Township, and 2) Rogers – well – Trout Road, College Township

A Source Water Assessment of our sources was completed in 2003 by the PA Department of Environmental Protection (PADEP). The Assessment has found that our sources are potentially most susceptible to accidental spills along roads and leaks in underground storage tanks and other effects of urban and suburban influences on groundwater. Overall, our sources have moderate risk of significant contamination. Summary reports of the Assessment are available by writing to the College Township Water Authority, 1481 E. College Ave., State College, PA, 16801 and will be available on the PADEP website at www.depweb.state.pa.us (Keyword: “source water”). Complete reports were distributed to municipalities, water supplier, local planning agencies and PADEP offices. Copies of the complete report are available for review at the PADEP North-Central Regional Office, Records Management Unit, 570-327-3636.

MONITORING YOUR WATER:
We routinely monitor for contaminants in your drinking water according to federal and state laws. The following tables show the results of our monitoring for the period of January 1 to December 31, 2017. The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data is from prior years in accordance with the Safe Drinking Water Act. The date has been noted on the sampling results table.

VIOLATIONS:
There were no (0) violations during the reporting period (January 1, 2017 to December 31, 2017).
Detected Sample Results:

Chemical Contaminants

<table>
<thead>
<tr>
<th>Chemical Contaminant</th>
<th>MCL in CCR units</th>
<th>MCLG</th>
<th>Highest Level Detected</th>
<th>Range of Detections Units</th>
<th>Sample Date</th>
<th>Violation Y/N</th>
<th>Sources of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium</td>
<td>2</td>
<td>2</td>
<td>0.063</td>
<td>0.027 to 0.063 ppm</td>
<td>2015</td>
<td>N</td>
<td>Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.</td>
</tr>
<tr>
<td>Haloacetic Acids (F)</td>
<td>60</td>
<td>n/a</td>
<td>3.16</td>
<td>3.16 to 3.16 ppb</td>
<td>2017</td>
<td>N</td>
<td>By-product of drinking water disinfection.</td>
</tr>
<tr>
<td>Nitrate</td>
<td>10</td>
<td>10</td>
<td>6.1</td>
<td>2.62 to 6.10 ppm</td>
<td>2017</td>
<td>N</td>
<td>Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.</td>
</tr>
<tr>
<td>Trihalometanes</td>
<td>80</td>
<td>n/a</td>
<td>16</td>
<td>8 to 16 ppb</td>
<td>2017</td>
<td>N</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>5</td>
<td>0</td>
<td>0.55</td>
<td>0.55 to 0.55 ppb</td>
<td>2017</td>
<td>N</td>
<td>Discharge from metal degreasing sites and other factories.</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>5</td>
<td>0</td>
<td>0.5</td>
<td>0.50 to 0.50 ppb</td>
<td>2017</td>
<td>N</td>
<td>Discharge from metal degreasing sites and other factories.</td>
</tr>
</tbody>
</table>

Health Effects - Note: Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask for advice from your health care provider.

Lead and Copper (sampled in 2016, Next Sample Year 2019)

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Action Level (AL)</th>
<th>MCLG</th>
<th>90th Percentile Result</th>
<th>Units</th>
<th>Sites Above AL of Total Sites</th>
<th>Sample Date</th>
<th>Violation Y/N</th>
<th>Sources of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>ppb</td>
<td>2</td>
<td>2016</td>
<td>N</td>
<td>Corrosion of house plumbing.</td>
</tr>
<tr>
<td>Copper</td>
<td>1.3</td>
<td>1.3</td>
<td>0.62</td>
<td>ppm</td>
<td>0 out of 20</td>
<td>2016</td>
<td>N</td>
<td>Corrosion of house plumbing.</td>
</tr>
</tbody>
</table>

Entry Point Disinfectant Residual

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Minimum Disinfectant Residual</th>
<th>Lowest Level Detected</th>
<th>Range of Detections Units</th>
<th>Sample Date</th>
<th>Violation Y/N</th>
<th>Sources of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>0.40</td>
<td>0.53</td>
<td>0.53 to 0.57 ppm</td>
<td>2017</td>
<td>N</td>
<td>Water additive used to control microbes.</td>
</tr>
</tbody>
</table>
DEFINITIONS AND ABBREVIATIONS:

Action Level (AL) - The concentration of a contaminant which, if exceeded, triggers treatment or other requirements.

Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Treatment Technique (TT) - A required process intended to reduce the level of a contaminant in drinking water.

\[
\text{Mrem/year} = \text{millirems per year (a measure of radiation absorbed by the body)}; \quad \text{pCi/L} = \text{picocuries per liter (a measure of radioactivity)}; \quad \text{ppb} = \text{parts per billion, or micrograms per liter (μg/L)}; \quad \text{ppm} = \text{parts per million, or milligrams per liter (mg/L)}; \\
\text{ppq} = \text{parts per quadrillion, or picograms per liter}; \quad \text{ppt} = \text{parts per trillion, or nanograms per liter}.
\]

EDUCATIONAL INFORMATION:

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water run-off, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA and DEP prescribe regulations which limit the amount of certain contaminants in water provided by public water systems. Food and Drug Administration regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

OTHER INFORMATION: Visit www.collegetownship.org for additional general information related to the College Township Water Authority.