Este informe contiene información muy importante sobre su agua de beber. Tradúzcalo ó hable con alguien que lo entienda bien. (This report contains very important information about your drinking water. Translate it, or speak with someone who understands it.)

WATER SYSTEM INFORMATION:
This report shows our water quality and what it means. If you have any questions about this report or concerning your water utility, please contact Adam Brumbaugh, Manager at (814) 231-3021. We want you to be informed about your water supply. If you want to learn more, please attend any of our regularly scheduled meetings. They are held the first Wednesday of each month at 7:00 PM in the College Township Municipal Building, 1481 E. College Avenue, State College, PA 16801.

SOURCE(S) OF WATER:
Our water sources are: (Name-Type-Location)
1) Spring Creek Park – well – Balmoral Way, College Township
2) Rogers – well – Trout Road, College Township

A Source Water Assessment of our sources was completed in 2003 by the PA Department of Environmental Protection (PADEP). The Assessment has found that our sources are potentially most susceptible to accidental spills along roads and leaks in underground storage tanks and other effects of urban and suburban influences on groundwater. Overall, our sources have moderate risk of significant contamination. A summary report of the Assessment is available on the Source Water Assessment Summary Reports eLibrary webpage: www.depgreenport.state.pa.us/elibrary/GetFolder?FolderID=4490. Complete reports were distributed to municipalities, water supplier, local planning agencies and PADEP offices. Copies of the complete report are available for review at the PADEP North-Central Regional Office, Records Management Unit, 570-327-3636.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline (800-426-4791).

MONITORING YOUR WATER:
We routinely monitor for contaminants in your drinking water according to federal and state laws. The following tables show the results of our monitoring for the period of January 1 to December 31, 2018. The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data is from prior years in accordance with the Safe Drinking Water Act. The date has been noted on the sampling results table.

DETECTED CONTAMINANTS HEALTH EFFECTS:
Nitrate: Nitrate in drinking water at levels above 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant, you should ask for advice from your health care provider.

EDUCATIONAL INFORMATION:
The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pick up substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:
• Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.

• Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water run-off, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

• Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.

• Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.

• Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, EPA and DEP prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA and DEP regulations establish limits for contaminants in bottled water which must provide the same protection for public health.

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline (800-426-4791).

OTHER INFORMATION:

College Township Water Authority continues implementation of a multi-year cross-connection and backflow prevention program. Customers will be notified by mail regarding this program. Also, the Authority continues to develop a third groundwater well to provide an additional source of water and help ensure our ability to meet the water demands of existing customers throughout the system.

DEFINITIONS AND ABBREVIATIONS:

Action Level (AL) - The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) - The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) - The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.

Minimum Residual Disinfectant Level Goal (MRDLG) - The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Minimum Residual Disinfectant Level (MinRDL) - The minimum level of residual disinfectant required at the entry point to the distribution system.

Treatment Technique (TT) - A required process intended to reduce the level of a contaminant in drinking water.

Mrem/year = millirems per year (a measure of radiation absorbed by the body)

pCi/L = picocuries per liter (a measure of radioactivity)

ppb = parts per billion, or micrograms per liter (μg/L)

ppm = parts per million, or milligrams per liter (mg/L)

ppq = parts per quadrillion, or picograms per liter

ppt = parts per trillion, or nanograms per liter
DETECTED SAMPLE RESULTS:

Chemical Contaminants

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>MCL in CCR Units</th>
<th>MCLG</th>
<th>Maximum Level Detected</th>
<th>Range of Detections</th>
<th>Units</th>
<th>Sample Date</th>
<th>Violation Y/N</th>
<th>Sources of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Barium</td>
<td>2</td>
<td>2</td>
<td>0.05</td>
<td>0 to 0.05</td>
<td>ppm</td>
<td>2018</td>
<td>N</td>
<td>Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits</td>
</tr>
<tr>
<td>Chlorine</td>
<td>MRDL=4</td>
<td>MRDLG=4</td>
<td>0.95</td>
<td>0.47 to 0.95</td>
<td>ppm</td>
<td>2018</td>
<td>N</td>
<td>Water additive used to control microbes</td>
</tr>
<tr>
<td>Haloacetic Acids (Five)</td>
<td>60</td>
<td>n/a</td>
<td>2.0</td>
<td>2.0 to 2.0</td>
<td>ppb</td>
<td>2018</td>
<td>N</td>
<td>By-product of drinking water disinfection</td>
</tr>
<tr>
<td>Nitrate</td>
<td>10</td>
<td>10</td>
<td>7.1</td>
<td>2.87 to 7.1</td>
<td>ppm</td>
<td>2018</td>
<td>N</td>
<td>Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits</td>
</tr>
<tr>
<td>Trihalomethanes</td>
<td>80</td>
<td>n/a</td>
<td>13</td>
<td>11 to 13</td>
<td>ppb</td>
<td>2018</td>
<td>N</td>
<td>By-product of drinking water chlorination</td>
</tr>
<tr>
<td>Trichloroethylene</td>
<td>5</td>
<td>0</td>
<td>0.6</td>
<td>0 to 0.6</td>
<td>ppb</td>
<td>2018</td>
<td>N</td>
<td>Discharges from metal degreasing sites and other factories</td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>5</td>
<td>0</td>
<td>0.6</td>
<td>0 to 0.6</td>
<td>ppb</td>
<td>2018</td>
<td>N</td>
<td>Discharges from factories and dry cleaners</td>
</tr>
<tr>
<td>Gross Alpha</td>
<td>15</td>
<td>0</td>
<td>3.4</td>
<td>3.4 to 3.4</td>
<td>pCi/L</td>
<td>2014</td>
<td>N</td>
<td>Erosion of natural deposits</td>
</tr>
</tbody>
</table>

Entry Point Disinfectant Residual

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Minimum Disinfectant Residual</th>
<th>Lowest Level Detected</th>
<th>Range of Detections</th>
<th>Units</th>
<th>Sample Date</th>
<th>Violation Y/N</th>
<th>Sources of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine</td>
<td>0.4</td>
<td>0.49</td>
<td>0.49 to 0.95</td>
<td>ppm</td>
<td>2018</td>
<td>N</td>
<td>Water additive used to control microbes</td>
</tr>
</tbody>
</table>

Lead and Copper

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>Action Level (AL)</th>
<th>MCLG</th>
<th>90th Percentile Value</th>
<th>Units</th>
<th># Sites Above AL of Total Sites</th>
<th>Sample Date</th>
<th>Violation Y/N</th>
<th>Sources of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>ppb</td>
<td></td>
<td>2016</td>
<td>N</td>
<td>Corrosion of household plumbing</td>
</tr>
<tr>
<td>Copper</td>
<td>1.3</td>
<td>1.3</td>
<td>0.62</td>
<td>ppm</td>
<td></td>
<td>2016</td>
<td>N</td>
<td>Corrosion of household plumbing</td>
</tr>
</tbody>
</table>